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Abstract. Recognition of Indian language scripts is a challenging problem. 
Work for the development of complete OCR systems for Indian language scripts 
is still in infancy. Complete OCR systems have recently been developed for 
Devanagri and Bangla scripts. Research in the field of recognition of Gurmukhi 
script faces major problems mainly related to the unique characteristics of the 
script like connectivity of characters on the headline, characters in a word 
present in both horizontal and vertical directions, two or more characters in a 
word having intersecting minimum bounding rectangles along horizontal 
direction, existence of a large set of visually similar character pairs, multi-
component characters, touching characters which are present even in clean 
documents and horizontally overlapping text segments. This paper addresses the 
problems in the various stages of the development of a complete OCR for 
Gurmukhi script and discusses potential solutions. A multi-font Gurmukhi OCR 
for printed text with an accuracy of more than 97% at character level is 
presented. 
Keywords.  OCR, Gurmukhi, Segmentation, Classification, Post processing  

1. Introduction 
During the past fifty years, optical character recognition systems have come a 
long way from one-of-a-kind special purpose readers to the multi-purpose 
production and interactive on-line systems of today. This progress has lowered 
data capture costs and has caused development of more reliable and accurate 
OCR systems. Now, commercial OCR systems for Latin characters are widely 
available on personal computers. Further, systems in the market can now read a 
variety of writing styles (e.g., handwritten, printed omni-font) and character sets 
including Chinese, Japanese, Korean, Cyrillic, and Arabic. Modern OCR 
software is highly accurate, easy to use and affordable and for the first time 
OCR looks set to be adopted in all kinds of work environments on a mass scale. 
Research on Devanagri, Tamil and Telugu optical text recognition started 
around mid 70s[1-4]. But the research had only theoretical importance and it did 
not lead to development of a practical OCR system. It was only around mid 90s 
that researchers started working for development of complete OCR systems for 
Indian scripts such as Devanagri and Bangla[5-6].  
 
The research work on OCR of Gurmukhi script is in its infancy. Lehal and 
Singh[7] and Goyal et al[8] have presented segmentation schemes for Gurmukhi 

 
 



text. Lehal and Singh[9] have also developed feature extraction and 
classification schemes for machine recognition of Gurmukhi characters.  A post 
processing system for an OCR of Gurmukhi script has also been presented by 
Lehal and Singh[10].  
 
Gurmukhi script is used primarily for the Punjabi language, which is the world’s 
14th most widely spoken language. The populace speaking Punjabi is not only 
confined to North Indian states such as Punjab, Haryana, Delhi, Rajasthan and 
Jammu & Kashmir but is spread over all parts of the world. It is spoken by over 
30 million people in India as well as people living in far flung countries such as 
UK, USA, Canada, UAE, Singapore, Kenya, Fiji and Malaysia. There is rich 
literature in this language in the form of scripture, books, poetry, etc. Gurmukhi 
is the first official script adopted by Punjab state. It is also the second language 
in many northern states of India. It is, therefore, important to develop OCR for 
such a rich and widely used language which may find many practical use in 
various areas. In this paper we present a complete OCR system for Gurmukhi 
script. To the best our knowledge, this is the first paper dealing with a complete 
OCR system for Gurmukhi script. 

2. Characteristics of Gurmukhi Script 
Gurmukhi script like most of other Indian language scripts is written in a 
nonlinear fashion. The width of the characters is also not constant. The vowels 
getting attached to the consonant are not in one (or horizontal) directions, they 
can be placed  either on the top or at the bottom of consonants. This makes the 
use of the script on computers more complicated to represent and process. Some 
of the major characteristics of the Gurmukhi script from OCR point of view are: 
 

 Character set : Gurmukhi script is syllabic in nature. Gurmukhi script-
consists of 41 consonants called vianjans, 9 vowel symbols called laga 
or matras, 2 symbols for nasal sounds(  : ,  ̂  ), one symbol for 
reduplication of sound of any consonant (  & ) and three half characters (  
H  X  q ), which lie at the feet of consonants. The complete Gurmukhi 
character set is shown in Fig 1.The first three consonants (u, a, e) are 
classified as open syllabals and called vowel consonants or 
semiconsonants or Matra Vahak due to their inherent property that they 
are never used in work without any Laga or 'Vowel'. The next two 
consonants are classified as root class consonants. The rest of the 
consonants except to the last two groups namely the - Antim and Naveen 
group, are categorized according to their phonetic structure. There are 
five such categories namely the Kakvarg toli, Chachvarg toli, Ttatvarg 
toli, Tatvarg toli  and the Pavarg toli  depending upon the different 
organs like throat, palate, mouth, tongue and lips, using which they are 
pronounced or from where they originate.The last but one group 

 
 



consisting of 5 independent consonants (y, r, l, v, R) is called the 
Antim group and the last group (S, K, Z, z, æ, F) is the Naveen group 
which has been introduced to accommodate the words of Persian, Arabic 
and Sanskrit. 

 
Consonants  
u a e         Matra Vahak 
                s h    Mul Varag 
c k g G L   Kakvarg Toli 
C x j J M   Chach Varg Toli 
t T D Q N   Ttatvarg Toli 
V W d Y n   Tatvarg Toli 
p f b B m   Pavarg Toli 
y r l v R   Antim Toli 
S z K F Z æ Naveen Toli 
Vowels 
A   i    I   U   <    E   >    ~  O  
 
Additional symbols
:  ̂   &                    
Half Characters 

  H    q    X           
Fig 1 : Gurmukhi Character Set 
 

 Connectivity of symbols : Most of the characters have a horizontal line at 
the upper part. The characters of a word are connected mostly by this line 
called head line and so there is no vertical inter-character gap in the letters 
of a word and formation of merged characters is a norm rather than an 
aberration in Gurmukhi script 

 Word Partitioning into zones : A word in Gurmukhi script can be 
partitioned into three horizontal zones (Fig. 2). The upper zone denotes the 
region above the head line, where vowels reside, while the middle zone 
represents the area below the head line where the consonants and some sub-
parts of vowels ( A i I )are present. The middle zone is the busiest zone. The 
lower zone represents the area below middle zone where the two vowels (  U   
<) and half characters lie in the foot of consonants.  

 Multi component characters : There are many multi-component characters 
in Gurmukhi script. A multi-component character is a character which can 
decompose into isolated parts (e.g. S, K, z, Z, F,   < ) 

 Frequently touching characters : Many of the characters in the lower zone 
of a text line frequently touch the characters in the middle zone. Upper zone 
characters are also occasionally merged into a single component.  

 
 



 Similarity of group of symbols: There are a lot of topologically similar 
character pairs in Gurmukhi script. They can be categorized as 

i. Character pairs which after thinning or in noisy conditions appear very 
similar (t and d, V and R, b and W,  V and D,  

~~
 and 

 E 
)  

ii. Character pairs which are differentiated whether or not they are open/closed 
along the  headline (s and m,  Y and p,  W and k) 

iii. Character pairs which are exactly similar in shape but are distinguished  
only by the presence/absence of a dot in the feet of a character (s and S, k 
and K, j and z, f and F, g and Z) 

 

 

Fig 2 : Three zones of a word in Gurmukhi script 
 

3. System Overview 
The overall system design of the Gurmukhi OCR system developed and 
implemented is shown in Fig. 3. As with most of the OCR systems, there are 
five main processing stages: Digitization, Pre-processing, Segmentation, 
Recognition and Post-processing. 

4. Digitization and Pre-processing 
In order to recognize a text document, the first step consists of converting the 
document into a numerically representable form. The conversion process is 
physically accomplished by a digitizer, which can either be a scanner or a 
camera. The scanning resolution varies from 100 to 900 dots per inch (dpi). In 
our present work we have used a scanning resolution of 300 dpi. 
4.1 Pre-Processing 
The pre-processing stage is a collection of operations that are applied 
successively on an image. It takes in a raw image and improves it by reducing 
noise and distortion, removing skewness and skeltonizing the pattern. In our 
current work we have performed the following pre-processing steps:  

1. Skew detection and correction 
2. Noise removal 
3. Thinning 
4. Smoothening the headline 

 

 
 



 Fig. 3 : An over view of the Gurmukhi script recognition system 
  
 

 
 



4.1.1 Skew Detection & Correction 
Skewness refers to the tilt in the bitmapped image of the scanned paper for 
OCR. It is usually caused if the document is not well aligned on the scanner, 
thus yielding a skewed (rotated) digital image. The segmentation and feature 
extraction algorithms developed by the authors for the Gurmukhi OCR are 
sensitive to the orientation (or skew) of the input document image making it 
necessary to develop algorithms to perform skew detection and correction 
automatically.  We have used the skew detection and correction technique for 
machine printed Gurmukhi script developed by Lehal and Dhir[11]. An 
advantage of this technique is that it is not constrained to any range and works 
correctly in the presence of graphics and tables in the text image.  
The algorithm works in three stages. The skew angle is determined by 
calculating horizontal and vertical projections at different angles at fixed 
interval in range [0°, 90°]. Under such projections, for an image with no skew, 
headlines appear as distinct peaks while gaps between successive text rows will 
be represented by valleys. The task is to determine the angle at which the 
highest peaks and deepest valleys in the projections are present. Both the 
horizontal and vertical profiles are simultaneously examined for peaks and 
valleys. In order to decrease the computational cost, first a rough estimate of the 
skew angle is made by taking the angle interval 3°. Once this estimate is 
calculated, the accurate skew angle θ is determined by looking in the range [θ - 
3°, θ + 3°] at an interval of 0.25°. The image is then rotated over -θ, where θ is 
the skew angle. Since the skew angle is checked only in the range [0° - 90°] and 
the image can be skewed at any angle in the range [-180°, 180° ], the rotated 
image may need another additional rotation by 90°, -90° or 180°, depending on 
the skewness of the image. After first rotation the bitmap image will be aligned 
along x or y-axis. If the rotated image is skewed at 90° or -90°, then the highest 
peaks and valleys would be present in vertical projection else they will be 
reported in horizontal projection. The physical characteristics of the Gurmukhi 
script are then used to determine the skew angle of the image after first rotation. 
To determine the skew angle of the image aligned with y-axis, if the black pixel 
density on the left side of headlines is greater than the black pixel density on 
right side of text rows then the image is skewed at -90° else it is skewed at 90°. 
Similarly for the image aligned with x-axis, if the black pixel density  above the  
headlines is lesser than the black pixel density below the headline then the 
image is straight else it is upside down. The image is rotated by the second 
rotation angle to completely remove any skewness present in the image.  
 
4.1.2 Noise Removal 
A preliminary noise removal algorithm has been employed to remove isolated 
black pixels and fill up the gaps in image regions by examining the 3x3 

 
 



neighbourhood of white pixels. In case the number of black pixels in the 3x3 
neighbourhood is more than six, then the white pixel is converted to black. 
 
4.1.3 Thinning  
Thinning is an essential step for many structural feature extraction methods. It 
reduces patterns to their skeletons or single pixel width pattern. It is often an 
efficient method for expressing structural relationships in characters as it 
reduces space and processing time by simplifying data structures. However, 
thinning has some disadvantages too. Thinning is a time-consuming process 
which may remove structurally significant portions of the image such as short 
protrusions, or introduce extraneous limbs or 'hairs'. In our present work, 
segmentation and feature extraction stages have greatly been simplified by 
working on thinned images of text, though in some of the cases the character 
shapes were slightly deformed. After experimenting with some of the common 
thinning algorithms, we have settled for the thinning algorithm suggested by 
Abdulla et al[12] for skeletonizing the Gurmukhi text images, as it was found to 
be the most suitable. 

5. Text Segmentation 
Gurmukhi script is a two dimensional composition of consonants, vowels and 
half characters which require segmentation in vertical as well in horizontal 
directions.  Thus the segmentation of Gurmukhi text calls for a 2D analysis 
instead of the commonly used one-dimensional analysis for Roman script. In 
addition to the common segmentation problems faced in Indian language 
scripts, Gurmukhi script has other typical problems such as horizontally 
overlapping text segments and touching characters in various zonal positions in 
a word. 
Since it is difficult to separate a cursive word directly into characters, a smaller 
unit than a character is preferred. To simplify character segmentation in our 
current work, we have taken an 8-connected component as the basic image 
representation throughout the recognition process and thus instead of character 
segmentation we have performed connected component segmentation. The 
segmentation stage breaks up a word and characters which lie above and below 
the headline into connected components and the classifier has been trained to 
recognize these connected components or sub-symbols. Table 1 lists all the 
connected components or sub-symbols derived from the Gurmukhi characters. It 
is to be noted that the headline is not considered a part of the connected 
component.  
 
A combination of statistical analysis of text height and width, horizontal 
projection and vertical projection and connected component analysis are 
performed to segment the text image into connected components. We have 

 
 



employed a 5 phased segmentation scheme. These phases, which are described 
in detail in [7], are: 
Table 1.  Sub-symbols of Gurmukhi script used for segmentation and 
recognition 
Symbol Sub-

symbols 
Symbol Sub-

symbols 
Symbol Sub-symbols 

u            
 and  

   

K  I  

g     
 

 

F  i  

S  Z  < 
 

z    o                   
  and  

 
Gurmukhi 
Characters 
in upper 
zone 

Same 
shapes 
retained 

Gurmukhi 
Characters 
in lower 
zone 

Same 
shapes 
retained 

Rest of 
Gurmukhi 
characters in  
middle zone 

Gurmukhi 
characters with 
their headlines 
stripped off 

 
1. Dissect the text image into text strips using valleys in the horizontal 

projection profiles. Each of these strips could represent either one text row 
or only the upper or lower zones of a text row or more than one text row. 
For example, in Fig. 4a, one text row has been split into three strips after 
the application of horizontal projection. The first strip contains the 
characters present in upper and in middle zones of words while the next 
two strips contain the components of lower zone characters of above lying 
text row.  Similarly the strip in Fig. 4b includes two text rows. These rows 
are horizontally overlapping and as such cannot be separated by horizontal 
projection profile.  

2. Perform statistical analysis to automatically label the text strips as multi 
strip, core strip, upper strip or lower strip, depending on whether the text 
strip contains more than one text row, one text row, upper zone or lower 
zone of a text row respectively. For example, in Fig. 5, strip nos. 2 and 3 
are lower strips, strip no. 1 is the core strip, strip no. 12 is the upper strip 
and strip no. 15 is the multi strip. 

3. Decompose the text strips into smaller components such as words and 
connected components using vertical projection profile analysis. In case of 
multi strip, the strip is first split into individual text rows using the 
statistics based on the average height of a core strip and next each text row 
is split into words. In case of upper and lower strips there are no words and 
we just have sub parts of upper and lower zone vowels respectively. A 
connected component analysis is carried out to obtain the connected 
components in these strips. 

 
 



4. Split words into connected components in case of core strip and multi 
strip. For obtaining the connected components the headline is rubbed off 
and after segmentation it is restored back.  

5. Detect and segment touching characters in connected components. This 
phase is explained briefly in the following subsection. 

 

                                                                      (a) 

                                                                     (b) 
Fig 4 : a) Text row split into three text strips b)Text strip containing two text 
rows. Gray line indicates the overlap region. 

 
 
 
 
 
 

 

 

 

 

 

 
Fig. 5.  A sample image split into text strips by horizontal projection 
5.1 Touching Characters  
It has been observed that touching characters are frequently present even in 
clean machine printed texts. As already mentioned, segmentation process for 
Gurmukhi script proceeds in both x and y directions, since two or more 
characters of a word may be sharing the same x coordinate. Therefore, for the 

 
 



segmentation of touching characters in Gurmukhi script, the merging points of 
the touching characters have to be determined both along the x and y axes. 
These touching characters can be categorized as follows:   

a) Touching characters in upper zone 
b) Touching characters in middle zone 
c) Lower zone characters touching with middle zone characters 
d) Lower zone characters touching with each other 

Fig. 6 shows examples of touching characters for these categories. The statistics 
such as average character width and height and certain heuristics were 
developed to solve the segmentation problem for Gurmukhi characters. The 
details are discussed elsewhere[7]. It was found during experiments that 6.9% of 
upper zone, 0.12% of middle zone characters, 19.11% of lower zone and middle 
zone characters and 0.03% of lower zone characters were touching with each 
other.  

 
(a) 

 
(b) 

 

   
(c) 

  
(d) 

Fig. 6. Examples of touching characters a) touching characters in upper zone, 
b)touching characters in middle zone, c) Lower zone characters touching with 
middle zone characters, d) Lower zone characters touching with each other 

6. Recognition Stage 
The main phases of the recognition stage of OCR of Gurmukhi characters in our 
present work are: 

1) Feature extraction 
2) Classification of connected components using extracted features and 

zonal information. 
3) Combining and converting the connected components to form Gurmukhi 

symbols. 

 
 



6.1 Feature Extraction  
After a careful analysis of shape of Gurmukhi characters for different fonts and 
sizes, two sets of features were developed. The first feature set called primary 
feature set is made up of robust and font and size invariant features. The 
purpose of primary feature set is to precisely divide the set of characters lying in 
middle zone into smaller subsets which can be easily managed. The cardinality 
of these subsets varies from 1 to 8. The Boolean valued features used in the 
primary feature set are: 

1) Number of junctions with the headline (P1) : It can be noted that each 
character in Gurmukhi has either 1 or more than 1 junctions with the 
headline. For example, the character f has one junction while p has 2 
junctions. This feature has been used to divide the complete Gurmukhi 
character set into almost 2 equal sized subsets. This feature is true if the 
number of junctions is 1 else it is false. 

2) Presence of sidebar (P2) : The presence or absence of sidebar is another 
very robust feature for classifying the characters. For example m, y and 
r have a sidebar while c, L and x do not have it. This feature is true if a 
vertical line is present on the rightmost side of the sub-symbol else it is 
false. 

3) Presence of a loop (P3) : The presence of a loop in the sub-symbol is 
another important classification feature. The loop should not be formed 
along the headline. Thus this feature is true for sub-symbol of  r but  is 
false for sub-symbol of  y since headline is involved in the loop. 

4) No Loop formed with headline(P4) : This feature is true if the 
character is open at top along the headline or in other words if there is no 
loop containing headline as its subpart. Examples of characters with this 
feature are r and k while it is absent in l and y. 

 
The second feature set, called secondary feature set, is a combination of local 
and global features, which are aimed to capture the geometrical and topological 
features of the characters and efficiently distinguish and identify the character 
from a small subset of characters. The secondary feature set is used for 
classification of all the characters of the Gurmukhi script lying in any one of the 
three zones, while primary feature set is used only for middle zone characters. 
The Secondary Feature Set consists of following features: 

1) Number of endpoints and their location (S1) : A black pixel is 
considered to be an end point if there is only one black pixel in its 3 x 3 
neighborhood in the resolution of the character image. In order to 
determine the position of an endpoint in one of the 9 quadrants, the 
character image is divided into a 3x3 equal zones that are numbered 1 
through 9(Fig. 7). Using these zones, the position of the endpoints in 
terms of their positions in quadrants and their numbers are noted.  

 
 

 
 



   
Fig. 7 : A character image divided into a 3x3 equal zones 
 

2) Number of junctions and their location (S2): A black pixel is 
considered to be a junction if there are more than two black pixels in its 
3 x 3 neighbourhood in the resolution of the character image. The 
number of junctions as well as their positions in terms of 9(3x3) 
quadrants are recorded. Junctions lying within a pre-defined radial 
distance are merged into a single junction and the junctions associated 
with the headline are ignored.  

3) Horizontal Projection Count (S3): Horizontal Projection Count is 
represented as HPC(i) = ∑j F(i, j), where F(i,j) is a pixel value (0 for 
background and 1 for foreground) of a character image, and i and j 
denote row and column positions of a pixel, with the image’s top left 
corner set to F(0,0). It is calculated by scanning the image row-wise and 
finding the sum of foreground pixels in each row. To take care of 
variations in character sizes, the horizontal projection count of a 
character image is represented by percentage instead of an absolute 
value and in our present work it is stored as a 4 component vector where 
the four components represent the percentage of rows with 1 pixel, 2 
pixels, 3 pixels and more than 3 pixels.  

Left and Right Projection profiles (S4 through S8) : The next 5 features are 
based on projection profiles. Left projection of a character is derived by 
scanning each line of the character from top to bottom and from left to right, 
and by storing the first black pixel of the character in each row. Similarly the 
right projection profile is found by scanning the character from top to bottom 
and from right to left. The pixels lying along the headline are ignored while 
deriving the projection profiles. 

4) Right Profile depth (S4): The maximum depth of the right profile is 
stored as percentage with respect to total width of the box enclosing the 
character image. 

5) Left Profile Upper Depth (S5): The profile is computed from the left 
and the maximum depth of the upper half of the profile is stored as 
percentage with respect to total width of the box enclosing the character 
image. 

6) Left Profile Lower Depth (S6): The maximum depth of the lower half 
of the left profile is stored as percentage with respect to total width of 
the box enclosing the character image. 

7) Left and Right Profile Direction Code (S7, S8): A variation of chain 
encoding is used on left and right profiles.  The profile is scanned from 
top to bottom and local directions of the profile at each pixel are noted. 

 
 



Starting from current pixel, the pixel distance of the next pixel in west, 
south or east directions is noted. The cumulative count of movement in 
the three directions is represented by the percentage occurrences with 
respect to the total number of pixel movement and stored as a 3 
component vector with the three components representing the distance 
covered in west, south and east directions respectively. Thus if the 
movements in west, south and east directions are 4, 2 and 5 pixels 
respectively, then the direction code of the profile will be [37, 18, 45].  

8) Aspect Ratio (S9) : Aspect ratio which is obtained by dividing the sub-
symbol height by its width, was found to be very useful for classifying 
the sub-symbols lying in lower-zone. 

9) Distribution of black pixels about the horizontal mid line (S10) :  It 
has been found during experiments that some of the very closely 
resembling characters such as d and t and  E and   ~ were difficult to 
recognize specially after thinning. Most of their features are similar. So a 
new feature was introduced specifically for these character pairs, which 
was based on distribution of black pixels in each column along the 
horizontal mid line. This distance is calculated by moving from left to 
right and at each column determining the distance of the nearest black 
pixel in that column from the horizontal middle line. This distance is 
then summed and normalized by dividing with the area of the character 
image and then converted into percentage. To take care of the distortions 
at the endpoints in some of the character images, we ignore ten percent 
of vertical regions at both the ends. The character image area is the 
product of its height and the truncated width.  

 
To further clarify the primary and secondary features used in our present study, 
we consider the three character images of Fig. 8. These images have been 
preprocessed and segmented from the text. The values of all primary and 
secondary features as calculated by the feature extractor are tabulated in Table 
2. The values in brackets for features S1 and S2 represent the quadrant number. 
Thus 1(9) for feature S2  means that there is one end point present in the 
character image in 9th quadrant. 

 
Fig 8 : Thinned character images 
 
Table 2: Calculated values of primary secondary features for images of Fig. 8 
 

 
 



Character → 
Feature ↓ 

T G J 

P1 True False False 
P2 False True False 
P3 True False False 
P4 False False True 
S1 0 1 (9) 3(4, 7, 9) 
S2 1(2) 2(8, 9) 3(4, 6, 8) 
S3 [32, 45, 6, 16] [13, 0, 73, 13] [40, 43, 0, 15] 
S4 50 3 37 
S5 50 9 92 
S6 34 100 92 
S7 [35, 40, 24] [4, 33, 62] [32, 13, 54] 
S8 [21, 43, 35] [3, 93, 3] [42, 31, 25] 
S9 1.14 0.91 1.14 
S10 10 27 10 
6.2 Classification 
In our present work, we have used a multi-stage classification in which the 
binary tree and nearest neighbour classifiers have been used in a hierarchical 
fashion. The complete feature set used for classification using nearest neighbour 
classifier is tabulated in Table 3. This classification scheme for the Gurmukhi 
characters  proceeds in 3 stages. These stages are: 

1) Using zonal information, we classify the symbol into one of the three 
sets, lying either in upper zone, middle zone or in lower zone. 

2) If the symbol is in the middle zone, then we assign it to one of the  sets 1 
to10 of Table 3 using primary features and binary classifier tree. At the 
end of this stage the symbol will be classified into one of 12 sets 
including the sets for characters in upper and lower zones. 

3) Lastly, the symbol classified to one of the 12 sets of Table 3 is 
recognized using nearest neighbour classifier and the feature set of 
secondary features assigned for that particular set. It is to be noted that 
not all the secondary features are used for classification. Depending on 
the sub-set and the characters which have to be distinguished in that sub-
set, we choose the features which are enough to effectively distinguish 
the characters of a sub-set. Thus, for example, for sub-set 6, which 
contains only two characters ( W b ), we note that the characters are quite 
close in appearance. They have same number of endpoints and joints as 
well as same features on the left profile. The only difference found is in 
the right projection profiles and so the secondary features S5 and S8 
which are related to right profile are used for classification.  

Table 3 : Secondary feature set for classification of character sets 
Set # Character Set Features for classification 
1 C r S1  S2  S3

 
 



2 h j . S1  S2 S3

3 c L x T D Q f B S1  S2  S3 S4  S5  S6 S7  S8

4 t N V d n v R S1  S2  S3 S4  S5  S6 S7  S8 S10

5 k - 
6 W b S5   S8

7 a  G  p  m S1  S2  S3 S5

8 s Y y S1  S2  S3 S5

9 u - 
10 e J M l S1  S2  S3 S4 S7 S8

11  S1  S7 S8 S10

12 U   H   q S8 S9

 
6.2.1 Design of the Binary Tree Classifier 
We have designed a strictly binary decision tree with 10 leaf and 9 non-leaf 
nodes. The leaf nodes correspond to the classification of the character in one of 
the 10 sub-classes. The height of the tree is 4. Only one feature is tested at each 
non-terminal node for traversing the tree. The decision rules are  binary i.e. the 
presence/absence of the feature. The features at the non-terminal nodes are 
chosen according to their robustness and tolerance to noise and remain invariant 
under font and image size. The most stable feature is used at root node and it 
divides the character set into two almost equal sized subsets. The complete 
binary tree classier is shown in Fig. 9. 

 
 



 
Fig. 9 : Binary Classifier tree 
 
6.3 Merging Sub-symbols  
In this last stage of recognition of characters, the information about coordinates 
of bounding box of sub-symbols and context is used to merge and convert the 
sub-symbols to Gurmukhi characters. It is to be noted that most of the sub-
symbols can be converted as such to equivalent character (Table 1). It is only in 
some typical cases where a character may be broken into more than one sub-
symbol that some rules have to be devised to merge these sub-symbols. For 
example, if the sub-symbol in middle zone is   and the next sub-symbols in 
middle and upper zones are . and respectively, then if the upper sub-symbol is 
vertically overlapping with one or more middle zone sub-symbols, then these 
sub-symbols might represent one of the character combinations rI, ri or g*.The 
information regarding the overlapping of the upper and middle zone connected 

 
 



components (CCs) is used to identify the characters represented by the CCs. 
Thus, if  is overlapping with both   and . then the CCs combine to form 
rI . If  is overlapping with only . then the CCs combine to form ri and if  
 is overlapping only with only  then the CCs combine to form g*. 

7. Post Processing 
In order to rectify the classification errors, the output of classification stage is 
fed to the post processor. For the post processing we have used a Punjabi 
corpus, which serves the dual purpose of providing data for statistical analysis 
of Punjabi language and also for checking the spelling of a word. Punjabi 
grammar rules are also incorporated to check for illegal character combinations 
such as presence of two consecutive vowels or a word starting with a forbidden 
consonant or vowel.  
A word frequency list is created from the Punjabi corpus. The list stores the 
frequency of occurrence of all words present in the corpus. The list is then 
partitioned into smaller sub lists based on the word size. We have created 7 sub-
lists corresponding to word sizes of two, three, four, five, six, seven and greater 
than seven characters. Further, in each of this sub-list, a list of visually similar 
words is generated. We say that two words are visually similar, if each character 
in the corresponding position of the two words is visually similar. To decide the 
visual similarity of two characters, the zonal position of the character and the 
primary features, discussed in section 6.1 are used. The Gurmukhi character set 
is divided into 16 sub-sets consisting of visually similar characters. Out of the 
16 sub-sets, the first ten sub-sets(0-9) contain the characters present in the 
middle zone. The middle zone characters are categorized using the four Boolean 
valued primary features, which have been described in section 6.1. These 
features, as already discussed, are very robust and easy to detect and need not be 
computed again as they are available from the recognition stage. All the 
members of a sub-set share the same Boolean values of the primary features. 
For example, for all the members of sub-set no. 2 (Table 4), the value of the first 
feature is true, second feature is false, third feature is true and fourth feature is 
false, since all the characters in this sub-set have one branch from the headline, 
do not have a side bar, contain a loop but no loop is formed along the headline.  
 
The eleventh and twelfth character sub-sets correspond to the upper zone and 
lower zone characters respectively. We have created separate sub-sets for some 
of the most frequently occurring characters, which have a very high recognition 
rate and are not confused with any other character. The thirteenth sub-set 
contains only the character A. From a statistical analysis of the corpus it was 
found that the character A is the most frequently occurring character with a 
frequency of occurrence of 10% and is very easily detectable. Similarly the 
character : , which is just a dot present in the upper zone and hereby referred as 
bindi, is very easily recognizable and not confused with any other character and  

 
 



has 5% frequency of occurrence, is assigned the fourteenth sub-set. The 
fifteenth and sixteenth character sub-sets consist of i and I characters. These 
characters, which are present in both upper and lower zones, have a high 
frequency of occurrence, and have no confusion with any other character. The 
complete sub-sets are shown in Table 4. 
Table 4 : Partitioning of Gurmukhi character set into 16 sub-sets 
Sub-
set No. 

Character Set Sub-set No. Character Set 

0  C r   8 u  o 

1  h j z 9 e J M l  
2  c L x T D Q f B F 10  E  >  ~  O &   ̂
3  t N V d n v R 11  U  <  q  H  X 

 

4  k K g Z 12 A 
5  W b 13 : 
6  a G  p  m 14 i 
7  s Y y S 15 I 
 
The sub-lists are stored in arrays of structures of visually similar words. We 
generate seven such arrays for word sizes of  two, three, four, five, six, seven 
and greater than seven characters. Each element in this array stores the 
information about the relative percentage frequency of occurrence of the 
visually similar words as well as the percentage frequency of occurrence of 
characters in different positions of the word. We call this array SSSL(Shape 
based Statistical Structure List). Each element of the array is assigned a unique 
code generated from the sub-list number of the characters and the array 
elements are arranged in sorted order of the code for faster searching. The 
structure of an element of the array SSSL is: 
struct SSSL_element 
{ 
   int code; 
   struct char_freq_list *char_list; 
   struct word_freq_list *word_list; 
}; 
struct char_freq_list 
{ 
    char punjabi_char; 
    int frequeny; 
    struct char_freq_list *next; 
}; 
 
struct word_freq_list 
{ 
    char *punjabi_word; 
    int frequeny; 
    struct word_freq_list *next; 
}; 
As is clear from the structure, each element of SSSL has links to char_freq_list 
and word_freq_list. The structure, char_freq_list is a single linked list storing 

 
 



the percentage frequency of occurrence of characters at a particular position and 
word_freq_list is a singly linked of visually similar words storing their relative 
percentage of frequency. The header node of char_freq_list has pointers to next 
node of the char_freq_list and char_freq_list for next character position.  For 
example, consider an eight word frequency list of words of length 3 (Table 5). 
From this frequency list, the SSSL, with two elements as shown in Fig. 10, is 
generated. 
 
Table 6: A word frequency list of word size 3 
Word Frequency Word Frequency 
j~r 1400 h~r 2600 
hEr  500 j&C 1500 
n&c 2500 v*D 4700 
d*D 1600 n~c 1200 
 

 
Fig 10 : SSSL generated from word frequency list of Table 5 
The first element of the list in Fig 10 contains first four words of the frequency 
list. These words have visually similar characters in all the three positions and 
hence they are considered to be visually similar. The first character in each of 
these words belongs to sub-set 1, second character belongs to sub-set 10 and 
third character belongs to sub-set zero. Thus the code of this structure in 
hexadecimal format is 1A0, representing the subset of the three character 
positions. The character h is present in the first position in the first and second 

 
 



word, giving a total frequency 3100 and similarly the character j is present in 
first  position in the third and fourth word, giving a total frequency 2900. The 
percentage frequency of occurrence of h and j in the first position is thus 52 and 
48 respectively and these values are stored in the char_freq_list for first position 
of the word.  Similarly the percentage frequency of occurrence of characters in 
second and third position is calculated and the char_freq_lists for those 
positions are generated. Similarly the relative percentage frequency of 
occurrence of the words is stored in the word_freq_list.  
 
The classifier generates a character distance pair set (CD){(c1, d1), (c2, d2)}, 
where c1 represents the best matching character and d1 represents the distance of 
the input character image from the character prototype stored in the training 
data. Similarly c2 and d2 represent the second nearest matching character and the 
distance of the input character image with the character prototype. The CD pairs 
are stored for each character position in the word. The SSSL is combined with 
the CD pairs to predict the most likely character. The final decision of the 
choice of character is obtained by combining the results of the recognizer and 
the post processor. Depending on how closely the character image matches with 
the nearest character prototype and the second nearest character prototype, a 
decision is made on how much weightage has to be assigned to the post 
processor and the recognizer. We have used two weights, w1 and w2, where w1 
is based on the distance of the character with its nearest matching prototype(d1) 
and represents the confidence of the recognizer. Smaller value of w1 means that 
the character image is closely matching the library image and lesser weight has 
to be assigned to the post processor. The weight w2 represents the closeness of 
the shapes of the top two choices.   Higher value of w2 means that the shape of 
the character images of top two choices are closely matching and the confusion 
is to be resolved by assigning more weight to the post processor. These weights 
are combined with the percentage of occurrence of the top two choices at a 
particular position in the word and the distance of top two choices with their 
nearest matching training set prototypes. The decision on the choice of one of 
the characters is taken as follows: 
We calculate a parameter, dist, which represents the distance of the recognized 
character from the actual character. This has been formulated empirically as  
 dist = ((w1+w2)/(100.0))*(p2-p1) – (d2-d1)2                (1) 
 where  d1 = distance of first choice (char1) with the nearest matching 
library prototype 
 d2 = distance of second choice (char2) with the nearest matching 
library prototype 
 w1 = d1

2  subject to maximum of 50;  
 w2 =50-(d2 - d1)2  subject to minimum of 0; 
 p1 = percentage frequency of occurrence of char1 in char_freq_list; 
 p2 = percentage frequency of occurrence of char2 in char_freq_list; 
We recognize a character as char2 if dist > 0 else it is retained as char1

 
 



 
Using this technique we have been able to rectify more than one wrongly 
recognized character in a word. As an example, consider the skeletonized image 
in Fig. 11. The image in Fig. 11 represents the word b~l but it has been 
identified as WEl by the recognizer. 

 
Fig 11 : A Sample image 

 
 
The CD pairs generated for the first two wrongly identified characters of the word are 
{(W ,1 ) , (b,2)} and {(  E ,4 ) , (    ~,6)}. The percentage frequency of occurrence of W and 
b in the first position in the corresponding char_freq_list is 0 and 100 respectively.  
Thus d1=1,d2=2, p1=0, p2=100, w1=1, w2=49 and dist=49. For second character d1=4, 
d2=6, p1=1 and p2=99, w1=16 and w2=46 and dist=56.Since dist is positive for both the 
cases so the second choice character is taken for both cases and thus the word is 
corrected as b~l 
 
The purpose of the word_freq_list is two fold:  
Check for the existence of a word in the corpus: The recognized word is 
checked for its presence in the corpus by looking up the word_freq_list. If the 
word is not present then it is replaced with the nearest matching word provided 
that the distance of the recognized characters from the stored templates is 
greater than some preset threshold value. This is necessary to prevent accidental 
conversion of non-dictionary words such as proper nouns and abbreviations to a 
dictionary word. 
Perform holistic recognition of a word: The words in the list are sorted in 
descending order of frequency of occurrence. If it is found that the first word in 
the list has frequency of occurrence greater than 90, then the recognized word, 
even though it may be present in the corpus, is converted to the high probability 
word again subject to the condition that the distance of the recognized 
characters from the stored templates is greater than some threshold value.  
 
The Punjabi grammar rules are also used to eliminate illegal character 
combinations.   

8. Experimental Results 
We tested our OCR on 25 Gurmukhi text documents consisting of about 30000 
characters. The documents were pages from good quality books and laser print 
outs in multiple sizes and fonts. We tested on font sizes in the range 10-24 point 
size and 8 fonts were used. 
It was found that seven characters (j y x C R Y :) with a combined 
frequency of occurrences of 5.67% were recognized with almost 100% 

 
 



accuracy. Out of these the character j has a high frequency of occurrence 
(4.2%) but in the subset 2 (Table 2), there are only two other characters for 
resolving the confusion and their shapes are quite different so j is not confused 
with them. Twenty two characters with cumulative frequency of occurrences of 
44.69% are recognized with more than 98% accuracy. On the lower end, eleven 
characters (æ, }  ? : F p u  { ] \ |) with a cumulative frequency of 
occurrences of 10.08% have a low recognition rate of 80% or less. It is these 
characters which are the main bottlenecks in the performance of the OCR. It can 
be seen that majority of these characters are the characters with dot at their feet. 
The reason for this inaccuracy is that during the thinning either the dot is 
deleted or it gets merged with the character. Even among the characters with dot 
at their feet the characters Z K and F have a far more poor recognition accuracy 
as compared to characters æ S and z. The reason for this is that the dot is 
positioned in centre for characters æ S and z while for characters Z K and F the 
dot is positioned very close to the character and so it gets easily merged on 
thinning. The characters C  and  b have low recognition accuracy as they are 
very closely resembling with characters r and W respectively and are often 
confused with them. The characters  ? and  { , have their strokes often joined 
together or touching with other characters which makes it difficult to recognize 
them. The character, :(bindi), which is similar to a dot and is present in the 
upper zone is also difficult to recognize. There were two type of errors 
produced: a) Deletion - The character bindi would be removed during the 
scanning and binarization process or by the thinning algorithm. In many cases 
the bindi character would be merged with other symbols in the upper zone and 
vanish. b)Insertion - The noise present in the upper zone would be confused 
with bindi. Sometimes an upper zone vowel would be broken into smaller 
components, which would generate extra bindi characters. The above statistics 
are obtained without the application of the post processor. The recognition 
accuracy of the OCR without post processing was 94.35%, which was increased 
to 97.34% on applying the post processor to the recognized text. 
Some other observations which were made during the experiments are :  

a. The upper zone characters, which account for 28.6% of character 
occurrences have recognition accuracy of  91.19% which is improved to 
95.14% by the post processor. The upper zone vowels, (  E and    ~ ) , 
because of the similarity in shapes and large possible shape 
combinations were greatly confused by the recognizer and the confusion 
was partially resolved by the post processor. The other source of error in 
the upper zone is the character bindi, which has already been discussed 
in one of the previous sections.  

b. The recognizer performed very well on the characters in the middle 
zone, which is the busiest zone. There are 42 characters in the middle 
zone and their combined frequency of occurrence is 68.2%. A majority 
of the errors in this zone were made in the recognition of the visually 
similar  character pairs (b and W) and (C and r) and the characters with 

 
 



dots at their feet. The recognition rate of middle characters is 96.71%, 
which is further improved to 98.38% by the post processor. 

c. The lower zone, in which 2 vowels and 3 half characters reside, accounts 
for approximately 3.2% of total character population, proves to be the 
most difficult zone to remove errors. Some of the causes of the poor 
performance of the recognizer are the similarity in shapes of the 
characters, small size of the characters and merging of the lower zone 
characters with the middle zone characters. The recognition rate of the 
lower zone characters has been observed to be 79.48%, which has been 
improved to 87.87% by the post processor. 

 
A sample text image page is shown in Fig. 12. Each text row in the image has 
been taken from different books and laser print outs printed in different fonts 
and sizes. Touching characters in zones as discussed in section 5 can be found 
in the text image. For example, lower zone characters touching middle zone 
characters are present in second word of third line, touching characters in upper 
zone are present in second and third words in fifth row and lower zone touching 
characters are present in last word of second last row. The sixth and seventh 
rows are horizontally overlapping. The output after thinning, line segmentation, 
classification and post processing stages is depicted in Fig. 13.    
 
 
 
 
 
 
 
 
 
 
 
Fig. 12 : A sample text image
 
 
 
 
 
 
 
 
 
 
  a)       
pr ieWE VA srcAr hI b&iCaA: n*< ivgARdI h>      pr ieWE VA srcAr hI b&iCaA: n<* ivgARdI h> 

 
 



cUJ hEr sr~VA: V~~ pqApV h~: scd~                  cUJ h~r sr~VA VE pqApV h~: scdE 
h~vEgA . pqAicqVc nzArE~ cUd                       h~vEgA . pqAicqVc nzArE cUd 
p*jAWI il&pI dA vI sUal h> . sAhmUkI            p*jAbI il&pI dA vI sUal h> . sAhmUkI 
l&Ut iv:&C ih>&sE dAr sn .                       lU&t iv&C ih&sE dAr sn . 
n<* inj s*pVI dE irsiVaA: ' C                    n<* inj s^pVI dE irSiVaA: ' C  
VE cWjA crcE zmI:n n*q                          VE cbjA crcE zmIn n<* 
hI pqApV hEeI sI , pr ies                      hI pqApV h~eI sI , pr ies 
                  b)                                                           c) 
Fig. 13 : Different stages in recognition of sample image of Fig. 12 a) Image 
after thinning b) Output of the classification process. Wrongly recognized 
characters are rendered in red colour c) Output after post processing 

9. Conclusion 
This is the first time that a complete multi-font and multi-size OCR system for 
Gurmukhi script has been developed. It has been tested on good quality images 
from books and laser print outs and has recognition accuracy of more than 97%. 
We are now working for the testing and for the improvement of the performance 
of the OCR on newspapers and low quality text. 
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