
A Complete Machine printed Gurmukhi OCR System
G. S. Lehal1 and Chandan Singh2

1 Department of Computer Science and Applications, Punjabi University, Patiala, India
gslehal@mailcity.com

2 Department of Computer Science and Applications, Punjabi University, Patiala, India.
chandan@pbi.ernet.in

Abstract. Recognition of Indian language scripts is a challenging problem.
Work for the development of complete OCR systems for Indian language scripts
is still in infancy. Complete OCR systems have recently been developed for
Devanagri and Bangla scripts. Research in the field of recognition of Gurmukhi
script faces major problems mainly related to the unique characteristics of the
script like connectivity of characters on the headline, characters in a word
present in both horizontal and vertical directions, two or more characters in a
word having intersecting minimum bounding rectangles along horizontal
direction, existence of a large set of visually similar character pairs, multi-
component characters, touching characters which are present even in clean
documents and horizontally overlapping text segments. This paper addresses the
problems in the various stages of the development of a complete OCR for
Gurmukhi script and discusses potential solutions. A multi-font Gurmukhi OCR
for printed text with an accuracy of more than 97% at character level is
presented.
Keywords. OCR, Gurmukhi, Segmentation, Classification, Post processing

1. Introduction
During the past fifty years, optical character recognition systems have come a
long way from one-of-a-kind special purpose readers to the multi-purpose
production and interactive on-line systems of today. This progress has lowered
data capture costs and has caused development of more reliable and accurate
OCR systems. Now, commercial OCR systems for Latin characters are widely
available on personal computers. Further, systems in the market can now read a
variety of writing styles (e.g., handwritten, printed omni-font) and character sets
including Chinese, Japanese, Korean, Cyrillic, and Arabic. Modern OCR
software is highly accurate, easy to use and affordable and for the first time
OCR looks set to be adopted in all kinds of work environments on a mass scale.
Research on Devanagri, Tamil and Telugu optical text recognition started
around mid 70s[1-4]. But the research had only theoretical importance and it did
not lead to development of a practical OCR system. It was only around mid 90s
that researchers started working for development of complete OCR systems for
Indian scripts such as Devanagri and Bangla[5-6].

The research work on OCR of Gurmukhi script is in its infancy. Lehal and
Singh[7] and Goyal et al[8] have presented segmentation schemes for Gurmukhi

text. Lehal and Singh[9] have also developed feature extraction and
classification schemes for machine recognition of Gurmukhi characters. A post
processing system for an OCR of Gurmukhi script has also been presented by
Lehal and Singh[10].

Gurmukhi script is used primarily for the Punjabi language, which is the world’s
14th most widely spoken language. The populace speaking Punjabi is not only
confined to North Indian states such as Punjab, Haryana, Delhi, Rajasthan and
Jammu & Kashmir but is spread over all parts of the world. It is spoken by over
30 million people in India as well as people living in far flung countries such as
UK, USA, Canada, UAE, Singapore, Kenya, Fiji and Malaysia. There is rich
literature in this language in the form of scripture, books, poetry, etc. Gurmukhi
is the first official script adopted by Punjab state. It is also the second language
in many northern states of India. It is, therefore, important to develop OCR for
such a rich and widely used language which may find many practical use in
various areas. In this paper we present a complete OCR system for Gurmukhi
script. To the best our knowledge, this is the first paper dealing with a complete
OCR system for Gurmukhi script.

2. Characteristics of Gurmukhi Script
Gurmukhi script like most of other Indian language scripts is written in a
nonlinear fashion. The width of the characters is also not constant. The vowels
getting attached to the consonant are not in one (or horizontal) directions, they
can be placed either on the top or at the bottom of consonants. This makes the
use of the script on computers more complicated to represent and process. Some
of the major characteristics of the Gurmukhi script from OCR point of view are:

 Character set : Gurmukhi script is syllabic in nature. Gurmukhi script-
consists of 41 consonants called vianjans, 9 vowel symbols called laga
or matras, 2 symbols for nasal sounds(: , ̂), one symbol for
reduplication of sound of any consonant (&) and three half characters (
H X q), which lie at the feet of consonants. The complete Gurmukhi
character set is shown in Fig 1.The first three consonants (u, a, e) are
classified as open syllabals and called vowel consonants or
semiconsonants or Matra Vahak due to their inherent property that they
are never used in work without any Laga or 'Vowel'. The next two
consonants are classified as root class consonants. The rest of the
consonants except to the last two groups namely the - Antim and Naveen
group, are categorized according to their phonetic structure. There are
five such categories namely the Kakvarg toli, Chachvarg toli, Ttatvarg
toli, Tatvarg toli and the Pavarg toli depending upon the different
organs like throat, palate, mouth, tongue and lips, using which they are
pronounced or from where they originate.The last but one group

consisting of 5 independent consonants (y, r, l, v, R) is called the
Antim group and the last group (S, K, Z, z, æ, F) is the Naveen group
which has been introduced to accommodate the words of Persian, Arabic
and Sanskrit.

Consonants
u a e Matra Vahak
 s h Mul Varag
c k g G L Kakvarg Toli
C x j J M Chach Varg Toli
t T D Q N Ttatvarg Toli
V W d Y n Tatvarg Toli
p f b B m Pavarg Toli
y r l v R Antim Toli
S z K F Z æ Naveen Toli
Vowels
A i I U < E > ~ O

Additional symbols
: ̂ &
Half Characters

 H q X
Fig 1 : Gurmukhi Character Set

 Connectivity of symbols : Most of the characters have a horizontal line at
the upper part. The characters of a word are connected mostly by this line
called head line and so there is no vertical inter-character gap in the letters
of a word and formation of merged characters is a norm rather than an
aberration in Gurmukhi script

 Word Partitioning into zones : A word in Gurmukhi script can be
partitioned into three horizontal zones (Fig. 2). The upper zone denotes the
region above the head line, where vowels reside, while the middle zone
represents the area below the head line where the consonants and some sub-
parts of vowels (A i I)are present. The middle zone is the busiest zone. The
lower zone represents the area below middle zone where the two vowels (U
<) and half characters lie in the foot of consonants.

 Multi component characters : There are many multi-component characters
in Gurmukhi script. A multi-component character is a character which can
decompose into isolated parts (e.g. S, K, z, Z, F, <)

 Frequently touching characters : Many of the characters in the lower zone
of a text line frequently touch the characters in the middle zone. Upper zone
characters are also occasionally merged into a single component.

 Similarity of group of symbols: There are a lot of topologically similar
character pairs in Gurmukhi script. They can be categorized as

i. Character pairs which after thinning or in noisy conditions appear very
similar (t and d, V and R, b and W, V and D,

~~
 and

 E
)

ii. Character pairs which are differentiated whether or not they are open/closed
along the headline (s and m, Y and p, W and k)

iii. Character pairs which are exactly similar in shape but are distinguished
only by the presence/absence of a dot in the feet of a character (s and S, k
and K, j and z, f and F, g and Z)

Fig 2 : Three zones of a word in Gurmukhi script

3. System Overview
The overall system design of the Gurmukhi OCR system developed and
implemented is shown in Fig. 3. As with most of the OCR systems, there are
five main processing stages: Digitization, Pre-processing, Segmentation,
Recognition and Post-processing.

4. Digitization and Pre-processing
In order to recognize a text document, the first step consists of converting the
document into a numerically representable form. The conversion process is
physically accomplished by a digitizer, which can either be a scanner or a
camera. The scanning resolution varies from 100 to 900 dots per inch (dpi). In
our present work we have used a scanning resolution of 300 dpi.
4.1 Pre-Processing
The pre-processing stage is a collection of operations that are applied
successively on an image. It takes in a raw image and improves it by reducing
noise and distortion, removing skewness and skeltonizing the pattern. In our
current work we have performed the following pre-processing steps:

1. Skew detection and correction
2. Noise removal
3. Thinning
4. Smoothening the headline

 Fig. 3 : An over view of the Gurmukhi script recognition system

4.1.1 Skew Detection & Correction
Skewness refers to the tilt in the bitmapped image of the scanned paper for
OCR. It is usually caused if the document is not well aligned on the scanner,
thus yielding a skewed (rotated) digital image. The segmentation and feature
extraction algorithms developed by the authors for the Gurmukhi OCR are
sensitive to the orientation (or skew) of the input document image making it
necessary to develop algorithms to perform skew detection and correction
automatically. We have used the skew detection and correction technique for
machine printed Gurmukhi script developed by Lehal and Dhir[11]. An
advantage of this technique is that it is not constrained to any range and works
correctly in the presence of graphics and tables in the text image.
The algorithm works in three stages. The skew angle is determined by
calculating horizontal and vertical projections at different angles at fixed
interval in range [0°, 90°]. Under such projections, for an image with no skew,
headlines appear as distinct peaks while gaps between successive text rows will
be represented by valleys. The task is to determine the angle at which the
highest peaks and deepest valleys in the projections are present. Both the
horizontal and vertical profiles are simultaneously examined for peaks and
valleys. In order to decrease the computational cost, first a rough estimate of the
skew angle is made by taking the angle interval 3°. Once this estimate is
calculated, the accurate skew angle θ is determined by looking in the range [θ -
3°, θ + 3°] at an interval of 0.25°. The image is then rotated over -θ, where θ is
the skew angle. Since the skew angle is checked only in the range [0° - 90°] and
the image can be skewed at any angle in the range [-180°, 180°], the rotated
image may need another additional rotation by 90°, -90° or 180°, depending on
the skewness of the image. After first rotation the bitmap image will be aligned
along x or y-axis. If the rotated image is skewed at 90° or -90°, then the highest
peaks and valleys would be present in vertical projection else they will be
reported in horizontal projection. The physical characteristics of the Gurmukhi
script are then used to determine the skew angle of the image after first rotation.
To determine the skew angle of the image aligned with y-axis, if the black pixel
density on the left side of headlines is greater than the black pixel density on
right side of text rows then the image is skewed at -90° else it is skewed at 90°.
Similarly for the image aligned with x-axis, if the black pixel density above the
headlines is lesser than the black pixel density below the headline then the
image is straight else it is upside down. The image is rotated by the second
rotation angle to completely remove any skewness present in the image.

4.1.2 Noise Removal
A preliminary noise removal algorithm has been employed to remove isolated
black pixels and fill up the gaps in image regions by examining the 3x3

neighbourhood of white pixels. In case the number of black pixels in the 3x3
neighbourhood is more than six, then the white pixel is converted to black.

4.1.3 Thinning
Thinning is an essential step for many structural feature extraction methods. It
reduces patterns to their skeletons or single pixel width pattern. It is often an
efficient method for expressing structural relationships in characters as it
reduces space and processing time by simplifying data structures. However,
thinning has some disadvantages too. Thinning is a time-consuming process
which may remove structurally significant portions of the image such as short
protrusions, or introduce extraneous limbs or 'hairs'. In our present work,
segmentation and feature extraction stages have greatly been simplified by
working on thinned images of text, though in some of the cases the character
shapes were slightly deformed. After experimenting with some of the common
thinning algorithms, we have settled for the thinning algorithm suggested by
Abdulla et al[12] for skeletonizing the Gurmukhi text images, as it was found to
be the most suitable.

5. Text Segmentation
Gurmukhi script is a two dimensional composition of consonants, vowels and
half characters which require segmentation in vertical as well in horizontal
directions. Thus the segmentation of Gurmukhi text calls for a 2D analysis
instead of the commonly used one-dimensional analysis for Roman script. In
addition to the common segmentation problems faced in Indian language
scripts, Gurmukhi script has other typical problems such as horizontally
overlapping text segments and touching characters in various zonal positions in
a word.
Since it is difficult to separate a cursive word directly into characters, a smaller
unit than a character is preferred. To simplify character segmentation in our
current work, we have taken an 8-connected component as the basic image
representation throughout the recognition process and thus instead of character
segmentation we have performed connected component segmentation. The
segmentation stage breaks up a word and characters which lie above and below
the headline into connected components and the classifier has been trained to
recognize these connected components or sub-symbols. Table 1 lists all the
connected components or sub-symbols derived from the Gurmukhi characters. It
is to be noted that the headline is not considered a part of the connected
component.

A combination of statistical analysis of text height and width, horizontal
projection and vertical projection and connected component analysis are
performed to segment the text image into connected components. We have

employed a 5 phased segmentation scheme. These phases, which are described
in detail in [7], are:
Table 1. Sub-symbols of Gurmukhi script used for segmentation and
recognition
Symbol Sub-

symbols
Symbol Sub-

symbols
Symbol Sub-symbols

u
 and

K I

g

F i

S Z <

z o
 and

Gurmukhi
Characters
in upper
zone

Same
shapes
retained

Gurmukhi
Characters
in lower
zone

Same
shapes
retained

Rest of
Gurmukhi
characters in
middle zone

Gurmukhi
characters with
their headlines
stripped off

1. Dissect the text image into text strips using valleys in the horizontal

projection profiles. Each of these strips could represent either one text row
or only the upper or lower zones of a text row or more than one text row.
For example, in Fig. 4a, one text row has been split into three strips after
the application of horizontal projection. The first strip contains the
characters present in upper and in middle zones of words while the next
two strips contain the components of lower zone characters of above lying
text row. Similarly the strip in Fig. 4b includes two text rows. These rows
are horizontally overlapping and as such cannot be separated by horizontal
projection profile.

2. Perform statistical analysis to automatically label the text strips as multi
strip, core strip, upper strip or lower strip, depending on whether the text
strip contains more than one text row, one text row, upper zone or lower
zone of a text row respectively. For example, in Fig. 5, strip nos. 2 and 3
are lower strips, strip no. 1 is the core strip, strip no. 12 is the upper strip
and strip no. 15 is the multi strip.

3. Decompose the text strips into smaller components such as words and
connected components using vertical projection profile analysis. In case of
multi strip, the strip is first split into individual text rows using the
statistics based on the average height of a core strip and next each text row
is split into words. In case of upper and lower strips there are no words and
we just have sub parts of upper and lower zone vowels respectively. A
connected component analysis is carried out to obtain the connected
components in these strips.

4. Split words into connected components in case of core strip and multi
strip. For obtaining the connected components the headline is rubbed off
and after segmentation it is restored back.

5. Detect and segment touching characters in connected components. This
phase is explained briefly in the following subsection.

 (a)

 (b)
Fig 4 : a) Text row split into three text strips b)Text strip containing two text
rows. Gray line indicates the overlap region.

Fig. 5. A sample image split into text strips by horizontal projection
5.1 Touching Characters
It has been observed that touching characters are frequently present even in
clean machine printed texts. As already mentioned, segmentation process for
Gurmukhi script proceeds in both x and y directions, since two or more
characters of a word may be sharing the same x coordinate. Therefore, for the

segmentation of touching characters in Gurmukhi script, the merging points of
the touching characters have to be determined both along the x and y axes.
These touching characters can be categorized as follows:

a) Touching characters in upper zone
b) Touching characters in middle zone
c) Lower zone characters touching with middle zone characters
d) Lower zone characters touching with each other

Fig. 6 shows examples of touching characters for these categories. The statistics
such as average character width and height and certain heuristics were
developed to solve the segmentation problem for Gurmukhi characters. The
details are discussed elsewhere[7]. It was found during experiments that 6.9% of
upper zone, 0.12% of middle zone characters, 19.11% of lower zone and middle
zone characters and 0.03% of lower zone characters were touching with each
other.

(a)

(b)

(c)

(d)

Fig. 6. Examples of touching characters a) touching characters in upper zone,
b)touching characters in middle zone, c) Lower zone characters touching with
middle zone characters, d) Lower zone characters touching with each other

6. Recognition Stage
The main phases of the recognition stage of OCR of Gurmukhi characters in our
present work are:

1) Feature extraction
2) Classification of connected components using extracted features and

zonal information.
3) Combining and converting the connected components to form Gurmukhi

symbols.

6.1 Feature Extraction
After a careful analysis of shape of Gurmukhi characters for different fonts and
sizes, two sets of features were developed. The first feature set called primary
feature set is made up of robust and font and size invariant features. The
purpose of primary feature set is to precisely divide the set of characters lying in
middle zone into smaller subsets which can be easily managed. The cardinality
of these subsets varies from 1 to 8. The Boolean valued features used in the
primary feature set are:

1) Number of junctions with the headline (P1) : It can be noted that each
character in Gurmukhi has either 1 or more than 1 junctions with the
headline. For example, the character f has one junction while p has 2
junctions. This feature has been used to divide the complete Gurmukhi
character set into almost 2 equal sized subsets. This feature is true if the
number of junctions is 1 else it is false.

2) Presence of sidebar (P2) : The presence or absence of sidebar is another
very robust feature for classifying the characters. For example m, y and
r have a sidebar while c, L and x do not have it. This feature is true if a
vertical line is present on the rightmost side of the sub-symbol else it is
false.

3) Presence of a loop (P3) : The presence of a loop in the sub-symbol is
another important classification feature. The loop should not be formed
along the headline. Thus this feature is true for sub-symbol of r but is
false for sub-symbol of y since headline is involved in the loop.

4) No Loop formed with headline(P4) : This feature is true if the
character is open at top along the headline or in other words if there is no
loop containing headline as its subpart. Examples of characters with this
feature are r and k while it is absent in l and y.

The second feature set, called secondary feature set, is a combination of local
and global features, which are aimed to capture the geometrical and topological
features of the characters and efficiently distinguish and identify the character
from a small subset of characters. The secondary feature set is used for
classification of all the characters of the Gurmukhi script lying in any one of the
three zones, while primary feature set is used only for middle zone characters.
The Secondary Feature Set consists of following features:

1) Number of endpoints and their location (S1) : A black pixel is
considered to be an end point if there is only one black pixel in its 3 x 3
neighborhood in the resolution of the character image. In order to
determine the position of an endpoint in one of the 9 quadrants, the
character image is divided into a 3x3 equal zones that are numbered 1
through 9(Fig. 7). Using these zones, the position of the endpoints in
terms of their positions in quadrants and their numbers are noted.

Fig. 7 : A character image divided into a 3x3 equal zones

2) Number of junctions and their location (S2): A black pixel is
considered to be a junction if there are more than two black pixels in its
3 x 3 neighbourhood in the resolution of the character image. The
number of junctions as well as their positions in terms of 9(3x3)
quadrants are recorded. Junctions lying within a pre-defined radial
distance are merged into a single junction and the junctions associated
with the headline are ignored.

3) Horizontal Projection Count (S3): Horizontal Projection Count is
represented as HPC(i) = ∑j F(i, j), where F(i,j) is a pixel value (0 for
background and 1 for foreground) of a character image, and i and j
denote row and column positions of a pixel, with the image’s top left
corner set to F(0,0). It is calculated by scanning the image row-wise and
finding the sum of foreground pixels in each row. To take care of
variations in character sizes, the horizontal projection count of a
character image is represented by percentage instead of an absolute
value and in our present work it is stored as a 4 component vector where
the four components represent the percentage of rows with 1 pixel, 2
pixels, 3 pixels and more than 3 pixels.

Left and Right Projection profiles (S4 through S8) : The next 5 features are
based on projection profiles. Left projection of a character is derived by
scanning each line of the character from top to bottom and from left to right,
and by storing the first black pixel of the character in each row. Similarly the
right projection profile is found by scanning the character from top to bottom
and from right to left. The pixels lying along the headline are ignored while
deriving the projection profiles.

4) Right Profile depth (S4): The maximum depth of the right profile is
stored as percentage with respect to total width of the box enclosing the
character image.

5) Left Profile Upper Depth (S5): The profile is computed from the left
and the maximum depth of the upper half of the profile is stored as
percentage with respect to total width of the box enclosing the character
image.

6) Left Profile Lower Depth (S6): The maximum depth of the lower half
of the left profile is stored as percentage with respect to total width of
the box enclosing the character image.

7) Left and Right Profile Direction Code (S7, S8): A variation of chain
encoding is used on left and right profiles. The profile is scanned from
top to bottom and local directions of the profile at each pixel are noted.

Starting from current pixel, the pixel distance of the next pixel in west,
south or east directions is noted. The cumulative count of movement in
the three directions is represented by the percentage occurrences with
respect to the total number of pixel movement and stored as a 3
component vector with the three components representing the distance
covered in west, south and east directions respectively. Thus if the
movements in west, south and east directions are 4, 2 and 5 pixels
respectively, then the direction code of the profile will be [37, 18, 45].

8) Aspect Ratio (S9) : Aspect ratio which is obtained by dividing the sub-
symbol height by its width, was found to be very useful for classifying
the sub-symbols lying in lower-zone.

9) Distribution of black pixels about the horizontal mid line (S10) : It
has been found during experiments that some of the very closely
resembling characters such as d and t and E and ~ were difficult to
recognize specially after thinning. Most of their features are similar. So a
new feature was introduced specifically for these character pairs, which
was based on distribution of black pixels in each column along the
horizontal mid line. This distance is calculated by moving from left to
right and at each column determining the distance of the nearest black
pixel in that column from the horizontal middle line. This distance is
then summed and normalized by dividing with the area of the character
image and then converted into percentage. To take care of the distortions
at the endpoints in some of the character images, we ignore ten percent
of vertical regions at both the ends. The character image area is the
product of its height and the truncated width.

To further clarify the primary and secondary features used in our present study,
we consider the three character images of Fig. 8. These images have been
preprocessed and segmented from the text. The values of all primary and
secondary features as calculated by the feature extractor are tabulated in Table
2. The values in brackets for features S1 and S2 represent the quadrant number.
Thus 1(9) for feature S2 means that there is one end point present in the
character image in 9th quadrant.

Fig 8 : Thinned character images

Table 2: Calculated values of primary secondary features for images of Fig. 8

Character →
Feature ↓

T G J

P1 True False False
P2 False True False
P3 True False False
P4 False False True
S1 0 1 (9) 3(4, 7, 9)
S2 1(2) 2(8, 9) 3(4, 6, 8)
S3 [32, 45, 6, 16] [13, 0, 73, 13] [40, 43, 0, 15]
S4 50 3 37
S5 50 9 92
S6 34 100 92
S7 [35, 40, 24] [4, 33, 62] [32, 13, 54]
S8 [21, 43, 35] [3, 93, 3] [42, 31, 25]
S9 1.14 0.91 1.14
S10 10 27 10
6.2 Classification
In our present work, we have used a multi-stage classification in which the
binary tree and nearest neighbour classifiers have been used in a hierarchical
fashion. The complete feature set used for classification using nearest neighbour
classifier is tabulated in Table 3. This classification scheme for the Gurmukhi
characters proceeds in 3 stages. These stages are:

1) Using zonal information, we classify the symbol into one of the three
sets, lying either in upper zone, middle zone or in lower zone.

2) If the symbol is in the middle zone, then we assign it to one of the sets 1
to10 of Table 3 using primary features and binary classifier tree. At the
end of this stage the symbol will be classified into one of 12 sets
including the sets for characters in upper and lower zones.

3) Lastly, the symbol classified to one of the 12 sets of Table 3 is
recognized using nearest neighbour classifier and the feature set of
secondary features assigned for that particular set. It is to be noted that
not all the secondary features are used for classification. Depending on
the sub-set and the characters which have to be distinguished in that sub-
set, we choose the features which are enough to effectively distinguish
the characters of a sub-set. Thus, for example, for sub-set 6, which
contains only two characters (W b), we note that the characters are quite
close in appearance. They have same number of endpoints and joints as
well as same features on the left profile. The only difference found is in
the right projection profiles and so the secondary features S5 and S8
which are related to right profile are used for classification.

Table 3 : Secondary feature set for classification of character sets
Set # Character Set Features for classification
1 C r S1 S2 S3

2 h j . S1 S2 S3

3 c L x T D Q f B S1 S2 S3 S4 S5 S6 S7 S8

4 t N V d n v R S1 S2 S3 S4 S5 S6 S7 S8 S10

5 k -
6 W b S5 S8

7 a G p m S1 S2 S3 S5

8 s Y y S1 S2 S3 S5

9 u -
10 e J M l S1 S2 S3 S4 S7 S8

11 S1 S7 S8 S10

12 U H q S8 S9

6.2.1 Design of the Binary Tree Classifier
We have designed a strictly binary decision tree with 10 leaf and 9 non-leaf
nodes. The leaf nodes correspond to the classification of the character in one of
the 10 sub-classes. The height of the tree is 4. Only one feature is tested at each
non-terminal node for traversing the tree. The decision rules are binary i.e. the
presence/absence of the feature. The features at the non-terminal nodes are
chosen according to their robustness and tolerance to noise and remain invariant
under font and image size. The most stable feature is used at root node and it
divides the character set into two almost equal sized subsets. The complete
binary tree classier is shown in Fig. 9.

Fig. 9 : Binary Classifier tree

6.3 Merging Sub-symbols
In this last stage of recognition of characters, the information about coordinates
of bounding box of sub-symbols and context is used to merge and convert the
sub-symbols to Gurmukhi characters. It is to be noted that most of the sub-
symbols can be converted as such to equivalent character (Table 1). It is only in
some typical cases where a character may be broken into more than one sub-
symbol that some rules have to be devised to merge these sub-symbols. For
example, if the sub-symbol in middle zone is and the next sub-symbols in
middle and upper zones are . and respectively, then if the upper sub-symbol is
vertically overlapping with one or more middle zone sub-symbols, then these
sub-symbols might represent one of the character combinations rI, ri or g*.The
information regarding the overlapping of the upper and middle zone connected

components (CCs) is used to identify the characters represented by the CCs.
Thus, if is overlapping with both and . then the CCs combine to form
rI . If is overlapping with only . then the CCs combine to form ri and if
 is overlapping only with only then the CCs combine to form g*.

7. Post Processing
In order to rectify the classification errors, the output of classification stage is
fed to the post processor. For the post processing we have used a Punjabi
corpus, which serves the dual purpose of providing data for statistical analysis
of Punjabi language and also for checking the spelling of a word. Punjabi
grammar rules are also incorporated to check for illegal character combinations
such as presence of two consecutive vowels or a word starting with a forbidden
consonant or vowel.
A word frequency list is created from the Punjabi corpus. The list stores the
frequency of occurrence of all words present in the corpus. The list is then
partitioned into smaller sub lists based on the word size. We have created 7 sub-
lists corresponding to word sizes of two, three, four, five, six, seven and greater
than seven characters. Further, in each of this sub-list, a list of visually similar
words is generated. We say that two words are visually similar, if each character
in the corresponding position of the two words is visually similar. To decide the
visual similarity of two characters, the zonal position of the character and the
primary features, discussed in section 6.1 are used. The Gurmukhi character set
is divided into 16 sub-sets consisting of visually similar characters. Out of the
16 sub-sets, the first ten sub-sets(0-9) contain the characters present in the
middle zone. The middle zone characters are categorized using the four Boolean
valued primary features, which have been described in section 6.1. These
features, as already discussed, are very robust and easy to detect and need not be
computed again as they are available from the recognition stage. All the
members of a sub-set share the same Boolean values of the primary features.
For example, for all the members of sub-set no. 2 (Table 4), the value of the first
feature is true, second feature is false, third feature is true and fourth feature is
false, since all the characters in this sub-set have one branch from the headline,
do not have a side bar, contain a loop but no loop is formed along the headline.

The eleventh and twelfth character sub-sets correspond to the upper zone and
lower zone characters respectively. We have created separate sub-sets for some
of the most frequently occurring characters, which have a very high recognition
rate and are not confused with any other character. The thirteenth sub-set
contains only the character A. From a statistical analysis of the corpus it was
found that the character A is the most frequently occurring character with a
frequency of occurrence of 10% and is very easily detectable. Similarly the
character : , which is just a dot present in the upper zone and hereby referred as
bindi, is very easily recognizable and not confused with any other character and

has 5% frequency of occurrence, is assigned the fourteenth sub-set. The
fifteenth and sixteenth character sub-sets consist of i and I characters. These
characters, which are present in both upper and lower zones, have a high
frequency of occurrence, and have no confusion with any other character. The
complete sub-sets are shown in Table 4.
Table 4 : Partitioning of Gurmukhi character set into 16 sub-sets
Sub-
set No.

Character Set Sub-set No. Character Set

0 C r 8 u o

1 h j z 9 e J M l
2 c L x T D Q f B F 10 E > ~ O & ̂
3 t N V d n v R 11 U < q H X

4 k K g Z 12 A
5 W b 13 :
6 a G p m 14 i
7 s Y y S 15 I

The sub-lists are stored in arrays of structures of visually similar words. We
generate seven such arrays for word sizes of two, three, four, five, six, seven
and greater than seven characters. Each element in this array stores the
information about the relative percentage frequency of occurrence of the
visually similar words as well as the percentage frequency of occurrence of
characters in different positions of the word. We call this array SSSL(Shape
based Statistical Structure List). Each element of the array is assigned a unique
code generated from the sub-list number of the characters and the array
elements are arranged in sorted order of the code for faster searching. The
structure of an element of the array SSSL is:
struct SSSL_element
{
 int code;
 struct char_freq_list *char_list;
 struct word_freq_list *word_list;
};
struct char_freq_list
{
 char punjabi_char;
 int frequeny;
 struct char_freq_list *next;
};

struct word_freq_list
{
 char *punjabi_word;
 int frequeny;
 struct word_freq_list *next;
};
As is clear from the structure, each element of SSSL has links to char_freq_list
and word_freq_list. The structure, char_freq_list is a single linked list storing

the percentage frequency of occurrence of characters at a particular position and
word_freq_list is a singly linked of visually similar words storing their relative
percentage of frequency. The header node of char_freq_list has pointers to next
node of the char_freq_list and char_freq_list for next character position. For
example, consider an eight word frequency list of words of length 3 (Table 5).
From this frequency list, the SSSL, with two elements as shown in Fig. 10, is
generated.

Table 6: A word frequency list of word size 3
Word Frequency Word Frequency
j~r 1400 h~r 2600
hEr 500 j&C 1500
n&c 2500 v*D 4700
d*D 1600 n~c 1200

Fig 10 : SSSL generated from word frequency list of Table 5
The first element of the list in Fig 10 contains first four words of the frequency
list. These words have visually similar characters in all the three positions and
hence they are considered to be visually similar. The first character in each of
these words belongs to sub-set 1, second character belongs to sub-set 10 and
third character belongs to sub-set zero. Thus the code of this structure in
hexadecimal format is 1A0, representing the subset of the three character
positions. The character h is present in the first position in the first and second

word, giving a total frequency 3100 and similarly the character j is present in
first position in the third and fourth word, giving a total frequency 2900. The
percentage frequency of occurrence of h and j in the first position is thus 52 and
48 respectively and these values are stored in the char_freq_list for first position
of the word. Similarly the percentage frequency of occurrence of characters in
second and third position is calculated and the char_freq_lists for those
positions are generated. Similarly the relative percentage frequency of
occurrence of the words is stored in the word_freq_list.

The classifier generates a character distance pair set (CD){(c1, d1), (c2, d2)},
where c1 represents the best matching character and d1 represents the distance of
the input character image from the character prototype stored in the training
data. Similarly c2 and d2 represent the second nearest matching character and the
distance of the input character image with the character prototype. The CD pairs
are stored for each character position in the word. The SSSL is combined with
the CD pairs to predict the most likely character. The final decision of the
choice of character is obtained by combining the results of the recognizer and
the post processor. Depending on how closely the character image matches with
the nearest character prototype and the second nearest character prototype, a
decision is made on how much weightage has to be assigned to the post
processor and the recognizer. We have used two weights, w1 and w2, where w1
is based on the distance of the character with its nearest matching prototype(d1)
and represents the confidence of the recognizer. Smaller value of w1 means that
the character image is closely matching the library image and lesser weight has
to be assigned to the post processor. The weight w2 represents the closeness of
the shapes of the top two choices. Higher value of w2 means that the shape of
the character images of top two choices are closely matching and the confusion
is to be resolved by assigning more weight to the post processor. These weights
are combined with the percentage of occurrence of the top two choices at a
particular position in the word and the distance of top two choices with their
nearest matching training set prototypes. The decision on the choice of one of
the characters is taken as follows:
We calculate a parameter, dist, which represents the distance of the recognized
character from the actual character. This has been formulated empirically as
 dist = ((w1+w2)/(100.0))*(p2-p1) – (d2-d1)2 (1)
 where d1 = distance of first choice (char1) with the nearest matching
library prototype
 d2 = distance of second choice (char2) with the nearest matching
library prototype
 w1 = d1

2 subject to maximum of 50;
 w2 =50-(d2 - d1)2 subject to minimum of 0;
 p1 = percentage frequency of occurrence of char1 in char_freq_list;
 p2 = percentage frequency of occurrence of char2 in char_freq_list;
We recognize a character as char2 if dist > 0 else it is retained as char1

Using this technique we have been able to rectify more than one wrongly
recognized character in a word. As an example, consider the skeletonized image
in Fig. 11. The image in Fig. 11 represents the word b~l but it has been
identified as WEl by the recognizer.

Fig 11 : A Sample image

The CD pairs generated for the first two wrongly identified characters of the word are
{(W ,1) , (b,2)} and {(E ,4) , (~,6)}. The percentage frequency of occurrence of W and
b in the first position in the corresponding char_freq_list is 0 and 100 respectively.
Thus d1=1,d2=2, p1=0, p2=100, w1=1, w2=49 and dist=49. For second character d1=4,
d2=6, p1=1 and p2=99, w1=16 and w2=46 and dist=56.Since dist is positive for both the
cases so the second choice character is taken for both cases and thus the word is
corrected as b~l

The purpose of the word_freq_list is two fold:
Check for the existence of a word in the corpus: The recognized word is
checked for its presence in the corpus by looking up the word_freq_list. If the
word is not present then it is replaced with the nearest matching word provided
that the distance of the recognized characters from the stored templates is
greater than some preset threshold value. This is necessary to prevent accidental
conversion of non-dictionary words such as proper nouns and abbreviations to a
dictionary word.
Perform holistic recognition of a word: The words in the list are sorted in
descending order of frequency of occurrence. If it is found that the first word in
the list has frequency of occurrence greater than 90, then the recognized word,
even though it may be present in the corpus, is converted to the high probability
word again subject to the condition that the distance of the recognized
characters from the stored templates is greater than some threshold value.

The Punjabi grammar rules are also used to eliminate illegal character
combinations.

8. Experimental Results
We tested our OCR on 25 Gurmukhi text documents consisting of about 30000
characters. The documents were pages from good quality books and laser print
outs in multiple sizes and fonts. We tested on font sizes in the range 10-24 point
size and 8 fonts were used.
It was found that seven characters (j y x C R Y :) with a combined
frequency of occurrences of 5.67% were recognized with almost 100%

accuracy. Out of these the character j has a high frequency of occurrence
(4.2%) but in the subset 2 (Table 2), there are only two other characters for
resolving the confusion and their shapes are quite different so j is not confused
with them. Twenty two characters with cumulative frequency of occurrences of
44.69% are recognized with more than 98% accuracy. On the lower end, eleven
characters (æ, } ? : F p u {] \ |) with a cumulative frequency of
occurrences of 10.08% have a low recognition rate of 80% or less. It is these
characters which are the main bottlenecks in the performance of the OCR. It can
be seen that majority of these characters are the characters with dot at their feet.
The reason for this inaccuracy is that during the thinning either the dot is
deleted or it gets merged with the character. Even among the characters with dot
at their feet the characters Z K and F have a far more poor recognition accuracy
as compared to characters æ S and z. The reason for this is that the dot is
positioned in centre for characters æ S and z while for characters Z K and F the
dot is positioned very close to the character and so it gets easily merged on
thinning. The characters C and b have low recognition accuracy as they are
very closely resembling with characters r and W respectively and are often
confused with them. The characters ? and { , have their strokes often joined
together or touching with other characters which makes it difficult to recognize
them. The character, :(bindi), which is similar to a dot and is present in the
upper zone is also difficult to recognize. There were two type of errors
produced: a) Deletion - The character bindi would be removed during the
scanning and binarization process or by the thinning algorithm. In many cases
the bindi character would be merged with other symbols in the upper zone and
vanish. b)Insertion - The noise present in the upper zone would be confused
with bindi. Sometimes an upper zone vowel would be broken into smaller
components, which would generate extra bindi characters. The above statistics
are obtained without the application of the post processor. The recognition
accuracy of the OCR without post processing was 94.35%, which was increased
to 97.34% on applying the post processor to the recognized text.
Some other observations which were made during the experiments are :

a. The upper zone characters, which account for 28.6% of character
occurrences have recognition accuracy of 91.19% which is improved to
95.14% by the post processor. The upper zone vowels, (E and ~) ,
because of the similarity in shapes and large possible shape
combinations were greatly confused by the recognizer and the confusion
was partially resolved by the post processor. The other source of error in
the upper zone is the character bindi, which has already been discussed
in one of the previous sections.

b. The recognizer performed very well on the characters in the middle
zone, which is the busiest zone. There are 42 characters in the middle
zone and their combined frequency of occurrence is 68.2%. A majority
of the errors in this zone were made in the recognition of the visually
similar character pairs (b and W) and (C and r) and the characters with

dots at their feet. The recognition rate of middle characters is 96.71%,
which is further improved to 98.38% by the post processor.

c. The lower zone, in which 2 vowels and 3 half characters reside, accounts
for approximately 3.2% of total character population, proves to be the
most difficult zone to remove errors. Some of the causes of the poor
performance of the recognizer are the similarity in shapes of the
characters, small size of the characters and merging of the lower zone
characters with the middle zone characters. The recognition rate of the
lower zone characters has been observed to be 79.48%, which has been
improved to 87.87% by the post processor.

A sample text image page is shown in Fig. 12. Each text row in the image has
been taken from different books and laser print outs printed in different fonts
and sizes. Touching characters in zones as discussed in section 5 can be found
in the text image. For example, lower zone characters touching middle zone
characters are present in second word of third line, touching characters in upper
zone are present in second and third words in fifth row and lower zone touching
characters are present in last word of second last row. The sixth and seventh
rows are horizontally overlapping. The output after thinning, line segmentation,
classification and post processing stages is depicted in Fig. 13.

Fig. 12 : A sample text image

 a)
pr ieWE VA srcAr hI b&iCaA: n*< ivgARdI h> pr ieWE VA srcAr hI b&iCaA: n<* ivgARdI h>

cUJ hEr sr~VA: V~~ pqApV h~: scd~ cUJ h~r sr~VA VE pqApV h~: scdE
h~vEgA . pqAicqVc nzArE~ cUd h~vEgA . pqAicqVc nzArE cUd
p*jAWI il&pI dA vI sUal h> . sAhmUkI p*jAbI il&pI dA vI sUal h> . sAhmUkI
l&Ut iv:&C ih>&sE dAr sn . lU&t iv&C ih&sE dAr sn .
n<* inj s*pVI dE irsiVaA: ' C n<* inj s^pVI dE irSiVaA: ' C
VE cWjA crcE zmI:n n*q VE cbjA crcE zmIn n<*
hI pqApV hEeI sI , pr ies hI pqApV h~eI sI , pr ies
 b) c)
Fig. 13 : Different stages in recognition of sample image of Fig. 12 a) Image
after thinning b) Output of the classification process. Wrongly recognized
characters are rendered in red colour c) Output after post processing

9. Conclusion
This is the first time that a complete multi-font and multi-size OCR system for
Gurmukhi script has been developed. It has been tested on good quality images
from books and laser print outs and has recognition accuracy of more than 97%.
We are now working for the testing and for the improvement of the performance
of the OCR on newspapers and low quality text.

References
1. V. K. Govindan, A. P. Shivaprasad, “Character recognition-A review”,

Pattern Recognition, Vol. 23, 1990, pp. 671-683.
2. S. N. S. Rajasekaran, B. L. Deekshatulu, “Recognition of printed Telugu

characters”, Computer Graphics and Image Processing, Vol. 6, 1977,
pp. 335-360.

3. G. Siromoney, R. Chandrasekaran, M. Chandrasekaran, “Machine
recognition of printed Tamil characters”, Pattern Recognition, Vol. 10,
1978, pp. 243-247.

4. R. M. K. Sinha, H. N. Mahabala, “Machine recognition of Devanagari
script”, IEEE Trans on Systems, Man and Cybernetics, Vol. 9, 1979,
pp. 435-449.

5. B. B. Chaudhuri, U. Pal, “A complete printed Bangla OCR system”,
Pattern Recognition, Vol. 31, 1998, pp. 531-549.

6. V. Bansal, “Integrating knowledge sources in Devanagri text
recognition”, Ph.D. thesis. IIT Kanpur, 1999.

7. G S Lehal and Chandan Singh, “Text segmentation of machine printed
Gurmukhi script”, Document Recognition and Retrieval VIII, Paul B.
Kantor, Daniel P. Lopresti, Jiangying Zhou, Editors, Proceedings SPIE,
USA, Vol. 4307, 2001, pp. 223-231.

8. Ajay Goyal, G S Lehal and S S Deol, “Segmentation of Machine Printed
Gurmukhi Script”, Proceedings 9th International Graphonomics Society
Conference, Singapore, 1999, pp. 293-297.

9. G S Lehal and Chandan Singh, “Feature extraction and classification for
OCR of Gurmukhi script”, Vivek, Vol. 12, No. 2, 1999, pp. 2-12.

10. G. S. Lehal, C. Singh: A shape based post processor for Gurmukhi OCR.
Proceedings 6th International Conference on Document Analysis and
Recognition, Seattle, USA, 2001 1105-1109.

11. G S Lehal and Renu Dhir, “A Range Free Skew Detection Technique
for Digitized Gurmukhi Script Documents”, Proceedings 5th
International Conference of Document Analysis and Recognition,
Bangalore, 1999, pp. 147-152.

12. W. H. Abdulla, A. O. M. Saleh and A. H. Morad, “A preprocessing
algorithm for handwritten character recognition”, Pattern Recognition
Letters, Vol. 7, 1988, pp. 13-18.

	A Complete Machine printed Gurmukhi OCR System
	1 Department of Computer Science and Applications, Punjabi University, Patiala, India
	2 Department of Computer Science and Applications, Punjabi University, Patiala, India.
	1. Introduction
	2. Characteristics of Gurmukhi Script
	C x j J M Chach Varg Toli
	t T D Q N Ttatvarg Toli
	 H q X
	Fig 1 : Gurmukhi Character Set
	Fig 2 : Three zones of a word in Gurmukhi script

	3. System Overview
	4. Digitization and Pre-processing
	4.1 Pre-Processing
	 Fig. 3 : An over view of the Gurmukhi script recognition system
	4.1.1 Skew Detection & Correction

	
	4.1.2 Noise Removal
	
	4.1.3 Thinning

	5. Text Segmentation
	
	Table 1. Sub-symbols of Gurmukhi script used for segmentation and recognition
	Fig 4 : a) Text row split into three text strips b)Text strip containing two text rows. Gray line indicates the overlap region.

	
	
	
	
	
	
	Fig. 5. A sample image split into text strips by horizontal projection
	5.1 Touching Characters
	Fig. 6. Examples of touching characters a) touching characters in upper zone, b)touching characters in middle zone, c) Lower zone characters touching with middle zone characters, d) Lower zone characters touching with each other

	6. Recognition Stage
	6.1 Feature Extraction
	Fig. 7 : A character image divided into a 3x3 equal zones
	Fig 8 : Thinned character images

	6.2 Classification
	Table 3 : Secondary feature set for classification of character sets
	Set #
	C r

	6.2.1 Design of the Binary Tree Classifier
	Fig. 9 : Binary Classifier tree

	6.3 Merging Sub-symbols

	7. Post Processing
	Table 4 : Partitioning of Gurmukhi character set into 16 sub-sets
	A
	I
	Table 6: A word frequency list of word size 3
	Fig 10 : SSSL generated from word frequency list of Table 5
	Fig 11 : A Sample image

	8. Experimental Results
	Fig. 12 : A sample text image
	 b) c)
	Fig. 13 : Different stages in recognition of sample image of Fig. 12 a) Image after thinning b) Output of the classification process. Wrongly recognized characters are rendered in red colour c) Output after post processing

	9. Conclusion
	References

