
International Journal of Computational Intelligence Research.
ISSN 0973-1873 Vol.3, No.4 (2007), pp. 277–286
© Research India Publications http://www.ijcir.info

Segmentation of Horizontally Overlapping Lines

in Printed Indian Scripts

M.K. Jindal1, R.K. Sharma2 and G.S. Lehal3

1Department of Computer Applications,

Panjab University Regional Centre,
Muktsar, Punjab, India

manishphd@rediffmail.com
2School of Mathematics and Computer Applications,

Thapar Institute of Engineering and Technology,
Patiala, Punjab, India
 rksharma@tiet.ac.in

3Department of Computer Science,
Punjabi University, Patiala, Punjab, India.

gslehal@gmail.com

Abstract: Horizontally overlapping lines are normally found

in printed newspapers of any Indian script. Along with these
overlapping lines few other broken components of a line (strip)
having text less than a complete line are also found in text. The
horizontally overlapping lines and other strips make it very
difficult to estimate the boundary of a line leading to incorrect
line segmentation. Incorrect line segmentation decreases the
recognition accuracy. In this paper we have proposed a
solution for segmenting horizontally overlapping lines and
solved the problem of other strips in eight most widely used
printed Indian scripts. Whole document has been divided into
strips and proposed algorithm has been applied for segmenting
horizontally overlapping lines and associating small strips to
their respective lines. The algorithm has shown approximately
96.45-99.79% accuracy depending upon script. We have also
tried to segment horizontally overlapping lines, containing
different sized text, i.e. the newspaper articles in which bigger
sized heading lines overlaps with normal sized text lines.

Keywords: Horizontally overlapping lines, Strips, Indian scripts,
Headline based scripts, Non headline based scripts.

I. Introduction

A lot of research work has been investigated for character
recognition of Indian scripts. For an optical character
recognition (OCR) system, segmentation phase is an
important phase and accuracy of any OCR heavily depends
upon segmentation phase. Incorrect segmentation leads to
incorrect recognition. Segmentation phase includes line,
word and character segmentation. Before word and
character segmentation, line segmentation is performed to
find the number of lines and boundaries of each line in any
input document image. Incorrect line segmentation may

result in decrease in recognition accuracy. The simplest and
most widely used method to segment the lines is to use the
inter-line gap in horizontal projection as line boundaries.
This technique does not work well on many documents in
Indian scripts. It results in strips containing multiple
horizontally overlapping lines leading to under segmentation
and strips containing components of a line leading to over
segmentation. We have proposed an algorithm for
segmenting horizontally overlapping lines in eight most
widely used printed Indian scripts. These scripts are
Gurmukhi, Devanagari, Bangla, Gujarati, Kannada, Tamil,
Telugu and Malayalam. The problem of multiple
horizontally overlapping lines is common in printed
newspapers of these Indian scripts due to high compression
methods used for printing of the newspapers.

We have not found much reported work for segmenting
horizontally overlapping lines in Indian scripts. Bansal [1]
has discussed a two-pass algorithm based upon average line
height to solve the problem of horizontally overlapping lines
in Devnagari script. Harikumar et al. [2] have used the
concept of average line height to segment the horizontally
overlapping lines in Malayalam script. Pal and Datta [3]
have segmented unconstrained handwritten text lines by
dividing the text into vertical strips and then taking
horizontal projections. Pal et al. [4] have used various
features of Indian scripts like existence of headline, number
and position of peaks in horizontal projections, water
reservoir etc. to separate various lines from multi script
document. Pal and Chaudhuri [5] have used structural and
statistical features for separating machine printed text lines
from hand-written text lines for both Bangla and Devnagari
scripts. Dholakia et al. [6] have used slopes of connected
components to find the three zones in the printed Gujarati

278 M.K. Jindal, R.K. Sharma and G.S. Lehal

script. They have assumed that lines have been segmented
properly before finding the zones. This is not possible in
case of horizontally overlapping lines. To the best of our
knowledge, no author has discussed in detail the problem of
over segmentation of lines in a document. As the problem of
over segmentation has been discussed first time this is not
any modification to the previous work. The fragments of the
line produced due to over segmentation make the problem of
segmentation of lines very hard. The methods discussed in
literature [1, 2] for segmenting overlapping lines fail when
there is over segmentation. Also the methods [1, 2] will not
work that accurately when there are more than two
overlapping lines.

Pal and Chaudhuri [7, 8] have also discussed the concept
of zoning and line segmentation. Lehal (one of coauthor)
and Singh [9-11] have discussed the simple methods of line,
word and character segmentation and nothing has been
discussed for segmentation of overlapping lines. Hence this
is not any duplicate work.

In this paper, we have proposed new strategies to segment
the horizontally overlapping lines and joining together the
components of over segmented lines for eight printed Indian
scripts. The samples have been taken form the newspapers
of the corresponding scripts. Also the problem of
segmenting overlapping lines of different sized text has been
discussed.

The rest of the paper is organized as follows. In the next
Section, characteristics of Indian scripts have been described
briefly and Section III describes the preprocessing steps
taken. In Section IV, the problem of horizontally
overlapping lines has been defined and an algorithm has
been proposed to solve the problem. In Section V, the
problem of segmentation of overlapping lines of different
sized text has been solved, proposing a modified algorithm.
Finally, Section VI consists of results and discussions.

II. Characteristics of Indian Scripts

There are 23 official languages in India [12] namely
Assamese, Bengali, Bodo, Dogri, English, Gujarati, Hindi,
Kannada, Kashmiri, Konkani, Maithili, Malayalam,
Manipuri, Marathi, Nepali, Oriya, Punjabi, Sanskrit,
Santhali, Sindhi, Tamil, Telugu and Urdu. There are 13
different scripts Assamese, Bangla, Devnagari, Gujarati,
Gurmukhi, Kannada, Kashmiri, Malayalam, Oriya, Roman,
Tamil, Telugu and Urdu used for writing these languages.
The concept of upper/lower case characters is not present in
Indian language scripts except English language script.
Indian scripts can be divided into two groups. First group
having the concept of headline (a horizontal line at top of
the characters), e.g. Devnagari, Bangla and Gurmukhi script
alphabets have headline. Fig. 1 contains example words
from Gurmukhi script and line number 1 is called upper line,
line number 2 is start of headline, line number 3 is end of
the headline, line number 4 is called base line and line
number 5 is lower line in this figure. Second group contains
scripts not having the concept of headline, e.g. Gujarati,

Kannada, Malayalam, Oriya, Tamil, Telugu etc. Fig. 2
contains example words from Gujarati script and line
number 1 is called upper line, line number 2 is mean line,
line number 3 is base line and line number 4 is lower line in
this figure. A text line of almost every script can be
partitioned into three horizontal zones namely, upper zone,
middle zone and lower zone except Urdu script. Fig. 1 and 2
contains the examples showing the concept of three zones.

Figure 1. Gurmukhi script word: (a) upper zone from line
number 1 to 2, (b) middle Zone from line no 3 to 4, (c)
lower zone from line number 4 to 5.

Fig. 1(a), 1(b) and 1(c) show the contents of the three zones,
i.e. upper, middle and lower zone respectively in Gurmukhi
script (headline based script).

Figure 2. Gujarati script word: (a) upper zone from line
number 1 to 2, (b) middle Zone from line no 2 to 3, (c)
lower zone from line number 3 to 4.

Fig. 2(a), 2(b) and 2(c) show the contents of the three zones,
i.e. upper, middle and lower zone respectively in Gujarati
script (non headline based script).

III. Preprocessing

Preprocessing is applied on the input binary document in
order to minimize the effect of spurious noise during
segmentation of various strips and subsequently
segmentation of various lines. In the present study, both salt
and pepper noise have been removed using standard
algorithm [13]. The skewness present in the document
image has also been removed with the help of standard skew
detection and removal algorithm [14]. The algorithm
proposed in the present study does not perform well in case
the image is skewed, because all the algorithms are based on
the exact positions of the headline, baseline and meanline of
each line in the input document. If the image is skewed it
will not be possible to extract the exact position of headline,
baseline or meanline and algorithm will not work that
efficiently.

Segmentation of Horizontally Overlapping Lines 279

IV. Overlapping Lines Segmentation

Overlapping lines may exist in any script. Therefore
segmentation of overlapping lines is very much required for
text recognition purpose. Existence of other kinds of strips
in printed Indian scripts makes the problem of line
segmentation more difficult. In this section, we have
developed an algorithm to segment the horizontally
overlapping lines and joining together the components of
over segmented lines. We have used the idea of horizontal
projection and continuous vertical projection [1] in the
algorithm. Also, a strip can be defined as a collection of
consecutive run of horizontal rows containing at least one
pixel.

It has been observed that in some particular documents
such as newspapers of Indian scripts, line segmentation
using horizontal projection method fails and results in either
under segmentation or over segmentation. The lower zone
characters of one line may touch with the upper zone
characters of next line, thus producing multiple horizontally
overlapping lines. Ideally horizontal projection should
divide the document into horizontal strips, where each strip
corresponds to a single line, but in Indian scripts it has been
found that the strips contain components from other lines as
broken parts of single line. We have identified 10 such kinds
of strips as follows:

Type 1: strip containing only upper zone characters (strip

number 1 in Fig. 3, strip number 2 in Fig. 9, strip
number 3 in Fig. 17).

Type 2: strip containing only middle zone characters having
upper zone and/or lower zone but this upper and/or
lower zone has become part of some other strip
(strips number 2 and 6 in Fig. 3).

Type 3: strip containing upper zone characters touching
with middle zone characters having no lower zone
characters, i.e. one line (strip number 3 in Fig. 3,
strip number 2 in Fig. 5, strip number 1 in Fig. 9).

Type 4: strip containing upper zone characters touching
with middle zone characters having lower zone
characters, but the lower zone has been segmented
into different strip (strip number 9 in Fig. 3, strip
number 2 in Fig. 11, strip number 2 in Fig. 15).

Type 5: strip containing upper, middle and lower zone
characters, i.e. complete one line (strip number 4 in
Fig. 3, strip number 1 and 3 in Fig. 7, strip number
4 in Fig. 9, strips number 1, 4, 6 in Fig. 11, strip
number 1 in Fig. 15, strips number 1, 5 in Fig. 17).

Type 6: strip containing upper, middle and lower zone
characters of one line and upper zone of next line
(strip number 5 in Fig. 3).

Type 7: strip containing only lower zone characters (strip
number 7 in Fig. 3, strip number 3 in Fig. 11, strip
number 6 in Fig. 15).

Type 8: strip containing lower zone characters touching
with upper zone of next line (strip number 8 in Fig.
3, strip number 3 in Fig. 15).

Type 9: strip containing middle zone and lower zone
characters whose upper zone exists but belongs to
some different strip (strip number 3 in Fig. 9, strip
number 4 in Fig. 17).

Type 10: strip containing two or more horizontally
overlapping lines (strip number 8 in Fig. 3, strips
number 3, 4 in Fig. 5, strip number 2 in Fig. 7, strip
number 3 in Fig. 9, strip number 5 in Fig. 11, strips
number 1, 2 in Fig. 13, strip number 4 in Fig. 15,
strip number 2 in Fig. 17).

These kinds of strip lines make it very difficult to identify

strip type. Also in case of multiple horizontally overlapping
lines, it is difficult to estimate the exact position of pixel
row, which segments one line from the next line. Statistical
analysis of newspaper articles from various scripts reveals
the information as shown in Table 1 and 2, about the
percentage of occurrence of various kinds of strips.

Table 1. Percentage of various kinds of strip in Gurmukhi,
Devanagari, Bangla and Gujarati scripts.

 Script

Strip type

Gur-
mukhi

Deva-
nagari

Bangla Gujarati

Type 1 0.65 0 0 13.34
Type 2 0.78 0 0 0
Type 3 10.04 49.56 12.65 0
Type 4 21.39 0 0 0
Type 5 12.98 8.1 83.23 40.00
Type 6 2.04 0 0 3.33
Type 7 19.35 0 0 0
Type 8 14.84 0 0 0
Type 9 0 0 0 3.33
Type 10 17.93 42.34 04.12 40.00

Table 2. Percentage of various kinds of strips in Kannada,
Tamil, Telugu and Malayalam scripts.

 Script

Strip type

Kannada Tamil Telugu Malaya-
lam

Type 1 0 8.69 0 2.70
Type 2 0 0 0 0
Type 3 9.67 0 8.72 0
Type 4 6.45 0 0 0
Type 5 61.31 30.43 65.21 72.98
Type 6 0 0 0 0
Type 7 9.67 0 4.34 0
Type 8 0 0 4.34 0
Type 9 0 8.69 0 0
Type 10 12.90 52.19 17.39 24.32

280 M.K. Jindal, R.K. Sharma and G.S. Lehal

These results have been obtained by analyzing single
column news articles from newspapers of corresponding
script. We have taken sample of around 50-100 news items
of each script depending upon availability of different
newspapers in each script. Zero in any entry in Table 1 and
Table 2 indicates that we have not identified that kind of
strip out of available data (newspaper articles). But there
remains a possibility of finding these kinds of strips also. It
can be seen from the Table 1 and 2 that problem of
horizontally overlapping lines in Devanagari and Tamil is
acute and moderate in other scripts.

It may be noted that there are ten strips in Fig. 3, but
actual number of lines are nine. Strips 3 and 4 constitute a
complete line and need no segmentation. Strip 8 contains
overlapping lines, which require proper segmentation. Strips
1 and 7 contain components from upper and lower zone and
require the decision that these are part of which strip in
order to make a complete line. Similarly strip number 2 and
6, which contains only middle zone, needs to include its
upper and lower zones. Strip number 5 and 10 contains extra
lower/ upper zone of some adjoining line. As such, it is
necessary to find the exact boundaries of these lines.

Algorithm seglines has been developed for segmenting
horizontally overlapping lines and joining together the
components of over segmented lines. This algorithm
segments the whole document into individual lines. Its input
is single column news article of any script from eight scripts
and its output is document with proper line boundaries.

Algorithm seglines
BEGIN
Step 1: Using the horizontal projections, different strips
in input binary document are identified. For that whenever
HP(i)= 0 for i =1, 2, 3, …,L, it is marked as the boundary
of strip line. Let us denote the strips by S1, S2, S3, …, Sm
and first row of strip p as FR(Sp), last row of strip p as
LR(Sp). Height of the strip is calculated by H(Sp)=LR(Sp)-
FR(Sp) + 1, for p = 1, 2, 3, …, m. Strips identified in
document from eight scripts are shown in Figs. 3, 5, 7, 9,
11, 13, 15 and 17.
Step 2: if input document is from any headline based
script, go to step 3 else go to step 4.
Step 3: identify the position of headlines using horizontal
projections. Denote the ending position of the headlines as
H1, H2, H3, …, Hn. Also denote the lines to be identified as
L1, L2, L3, …, Ln.
//number of headlines is same as number of actual //lines
Go to step 5.
Step 4: identify the position of meanlines, using first
order differences of horizontal projections. Denote the
position of the meanlines as H1, H2, H3, …, Hn.
//number of meanlines are same as number of actual
//lines.
Step 5: define

AVG_LINE_HEIGHT =
1

1

−n
)(

2
1∑

=
−−

n

i
ii HH

Step 6: set LINE_NO = 1 and first row of line LINE_NO
as first row of first strip, i.e. FR(LLINE_NO)= FR(S1).
Step 7: for i = 1 to m, perform the following operations:

Step 7.1: if H(Si) < P1 * AVG_LINE_HEIGHT, Si is
of type 1.
//contains only upper zone
Repeat step 7.
//ignore current strip and go for next strip.
Step 7.2: if H(Si) > 0.50 * AVG_LINE_ HEIGHT, Si
will be of type 2, 3, 4, 5, 6, 8, 9 or 10 and will contain
at least one headline/meanline and one baseline.
Step 7.3: identify the position of baseline. Mark it as
BASELINE_NO. Also set height of the middle zone as
HGT_MID = BASELINE_NO – HLINE_NO.
Step 7.4: set last row of line LINE_NO as
LR(LLINE_NO) = BASELINE_NO + P2 *(HGT_MID).
//This will solve the segmentation problem of strip
//type 2, 3, 4, 5, 6, 8 and 9.
Step 7.5: if LR(Si) > LR(LLINE_NO)
//strip type 10 containing horizontally overlapping
//lines
set H(Si) = H(Si)-(LR(LLINE_NO)-FR(LLINE_NO)),
increment LINE_NO. Also set FR(LLINE_NO) =
LR(LLINE_NO-1) + 1 and go to step 7.1.
//for same strip.
Step 7.6: if LR(Si+1) <= LR(LLINE_NO), increment i.
//strip type 7 containing only lower zone
Repeat step 7.6.
//for multiple lower zones.
Step 7.7: increment LINE_NO. Set FR(LLINE_NO) =
LR(LLINE_NO-1) + 1. Go to step 7.
//for next strip.

Step 8: for j = 1 to LINE_NO
Display FR(Lj) to LR(Lj) as line boundaries.
END.

Segmentation of Horizontally Overlapping Lines 281

Figure 3. Various strips in printed Gurmukhi script.

Figure 4. Different line boundaries identified of Fig. 3 using
proposed algorithm.

Figure 5. Various strips in printed Devanagari script.

Figure 6. Different line boundaries identified of Fig. 5 using
proposed algorithm.

Figure 7. Various strips in printed Bangla script.

282 M.K. Jindal, R.K. Sharma and G.S. Lehal

Figure 8. Different line boundaries identified of Fig. 7 using
proposed algorithm.

Figure 9. Various strips in printed Gujarati script.

Figure 10. Different line boundaries identified of Fig. 9
using proposed algorithm.

Figure 11. Various strips in printed Kannada script.

Figure 12. Different line boundaries identified of Fig. 11
using proposed algorithm.

Figure 13. Various strips in printed Tamil script.

Figure 14. Different line boundaries identified of Fig. 13
using proposed algorithm.

Figure 15. Various strips in printed Telugu script.

Segmentation of Horizontally Overlapping Lines 283

Figure 16. Different line boundaries identified of Fig. 15
using proposed algorithm.

Figure 17. Various strips in printed Malayalam script.

Figure 18. Different line boundaries identified of Fig. 17
using proposed algorithm.

Figs. 4, 6, 8, 10, 12, 14, 16, 18 show the boundaries of
different lines identified for different scripts using the
proposed algorithm. This algorithm is developed on the
basis of a heuristic that makes a relation between the height
of middle zone with height of lower zone and upper zone.
We have chosen two parameters P1 and P2. P1 parameter
has been defined as the ratio of the height of upper zone
with average line height (AVG_LINE_HEIGHT) and P2
defines the height of the lower zone with respect to middle
zone. On the basis of experimental analysis on various news
articles of various scripts, we have adjusted the value of P1
and P2, e.g. for all headlines based scripts the height of the
middle zone is approximately equal to the double the height
of lower zone, so P2 is set as 0.50 (height of lower
zone/height of middle zone) for headline based scripts.

Similarly based upon the value of height of lower
zone/height of middle zone, the value of P2 is set for
different scripts.

Value of P1 and P2 differs for different scripts due to the
structural properties of the lower and upper zone characters
of these scripts. We have shown the values of P1 and P2 for
different scripts in Table 3.

Table 3. Value of P1 and P2 for different scripts.
Script Value of P1 Value of P2

Gurmukhi 0.30 0.50
Devnagari 0.30 0.50

Bangla 0.30 0.50
Gujarati 0.30 0.50
Kannada 0.25 0.70

Tamil 0.30 0.70
Telugu 0.40 0.80

Malayalam 0.30 0.70

The values of P1 and P2 have been set in accordance with
the available sample data. These values can be adjusted in
accordance with the different kinds of samples available in
different scripts.

For finding the position of headline in algorithm seglines,
for headline based scripts, one can use any standard
technique [1, 7, 8, 11] and for non headline based script
standard technique [6] can be used. We have used the
following code for identification of headline.

Step headline:
if script= headline based

find MAXPIX = max{HP(i)}, i = 1, 2, 3, …,L. The
headlines are considered as those lines whose HP(i) ≥
70% of MAXPIX

else
find first order differences of horizontal projections, i.e.
dx[i]=HP[i+1]-HP[i].
if script=Gujarati

while dx[i]>0 increment i;
start=i
while dx[i]<=0 increment i;
end=i
find max(HP[j]) for j=end to (end+(end-start))
row number j is meanline called mean.
upper=mean-start

else
find maxh=max(HP[]) for i = 1, 2, 3, …,L.
while dx[i]<0.55*maxh increment i;
i marks the meanline.

For finding the position of baseline, for headline based
scripts, one can use any standard technique [1, 7, 8, 11]. We
have used the following code identification of baseline for
both headline based and non headline based scripts.

284 M.K. Jindal, R.K. Sharma and G.S. Lehal

Step baseline:
If script=headline based

identify the position of baseline by noting the
continuous vertical projection CVP(k), {k=HLINE_NO to
LR(Si)}. The position where CVP(k) ends, mark it as
α , every time. The row in which maximum α are
found is considered to be the baseline.

else
find first order differences of horizontal projections, i.e.
dx[i] =HP [i+1]-HP[i].
if script=Gujarati

Find min(HP[j]), for j= mean + upper * 1.5 to
mean + upper * 2.5.
row number j is baseline.

else
find minh=min(HP[]) for i = 1, 2, 3, …,L.
while dx[i]>0.55 * minh increment i;
i marks the baseline.

 The algorithm seglines has shown a remarkable

improvement in accuracy, for segmenting the horizontally
overlapping lines and associating the broken components of
a line to their respective lines. This algorithm works even if
the input document contains many consecutive horizontally
overlapping lines. As shown in Fig. 13, there are four
consecutive horizontally overlapping lines in strip number 1
and three consecutive horizontally overlapping lines in strip
number 2. The proposed method segments all the lines of
these strips correctly into individual lines.

These kinds of problems have been found in newspapers
of almost all printed Indian scripts. We have analyzed and
solved the problem in eight most widely used printed Indian
scripts namely Gurmukhi, Devnagari, Bangla, Gujarati,
Kannada, Tamil, Telugu and Malayalam. The same
algorithm can be used for segmenting overlapping lines in
Oriya script.

The algorithm seglines fails in case of Urdu script. As
shown in Fig. 19 there are horizontally overlapping lines in
Urdu script also. Strip number 1 contains two and strip
number 2 contains four horizontally overlapping lines in
Fig. 19. There is no concept of zoning in Urdu script and
algorithm seglines is based upon upper zone, middle zone
and lower zone, hence algorithm will not segment
horizontally overlapping lines in this case.

IV. Overlapping Lines Segmentation of
Different Text Size.

Newspapers contain the text with a large variation in text
size. The headlines of every news is roughly always larger
in size than the actual news text. One can infer from Fig. 20
that first two lines that are heading of the news have larger
text size (let us call it segment 1) than the text size of the
news text (let us call it segment 2). The algorithm seglines

works accurately for segmenting overlapping lines of same
text size, but when two different texts sized lines overlaps
the algorithm does not work that accurately. Fig. 21 contains
the output of the algorithm seglines when applied on the text
given in Fig. 20. One can see that line number 2 and 3 are
not properly segmented. Line number 2 has overlapped with
line number 3, thus producing incorrect segmentation by
breaking some text portion of the third line and adding it to
the second line. Other lines have been correctly segmented.
As such, two consecutive lines having different text size are
not properly segmented.

Figure 19. Urdu script containing overlapping lines.

Figure. 20. Printed text of Gurmukhi script containing
mixed font size characters.

Segmentation of Horizontally Overlapping Lines 285

Figure 21. Different line boundaries of Fig. 20 identified

using proposed algorithm.

We have modified the algorithm seglines in order to solve
the problem of different text sizes by considering the fact
that the number of lines in segment 1 is less than the number
of lines in segment 2 for almost all news items. As such,
AVG_LINE_HEIGHT will be closer to average line height
of segment 2. Modified step 7 of the algorithm seglines is
given below:

Step 7: for i=1 to m perform the following operations:

Step 7.1: //for strip from segment 1
if (HLINE_No+1- HLINE_No) > 1.4 * (AVG_LINE_HEIGHT))
PT=0.35,PM=0.60 goto step 7.4.
Step 7.2: //for strip joining segment 1 and segment 2
if ((HLINE_No+1- HLINE_No) > 1.15 *
(AVG_LINE_HEIGHT))
PT=0.35, PM=0.60, flag=1, go to step 7.4.
Step 7.3: //for strip from segment 2
if ((HLINE_No+1- HLINE_No) < (AVG_LINE_HEIGHT)) set
flag1=1 and PT=0.25, PM=0.40.
Step 7.4: if H(Si)<PT * AVG_LINE_HEIGHT, Si is of
type 1.
//contains only upper zone
Repeat step 7.
//ignore current strip and go for next strip.
Step 7.5: if H(Si) > PM * AVG_LINE_HEIGHT, Si will
be of type 2, 3, 4, 5, 6, 8, 9 or 10 and will contain at
least one headline/meanline and one baseline.
Step 7.6: identify the position of baseline. Mark it as
BASELINE_NO. Also set height of the middle zone as
HGT_MID=BASELINE_NO – HLINE_NO..
Step 7.7: set last row of line LINE_NO as

LR(LLINE_NO)=BASELINE_NO +
2

1
(HGT_MID).

// This will solve the segmentation problem of strip type
of category 2, 3, 4, 5, 6, 8, 9.
Step 7.7.1: if (flag=1 and flag1=1) adjust FR(LLINE_NO)=

SHi -
2

1
(HGT_MID)

//as shown in Fig. 22 we have adjusted the starting

//row of 3rd line which was incorrectly segmented by
//algorithm seglines.
Step 7.8: if LR(Si) > LR(LLINE_NO)
// strip type 10 containing horizontally overlapping
//lines
Set H(Si)=H(Si)-(LR(LLINE_NO)-FR(LLINE_NO), increment
LINE_NO, set FR(LLINE_NO) =
LR(LLINE_NO-1)+1 and goto step 7.1.
//for same strip.
Step 7.9: if LR(Si+1)<=LR(LLINE_NO) increment i
// strip type 7 containing only lower zone
repeat step 7.6.
//for multiple lower zones.
Step 7.10: increment LINE_NO, set FR(LLINE_NO) =
LR(LLINE_NO-1)+1, go to step 7.
//for next strip.

As shown in Fig. 22, the modified algorithm has

segmented line number 2 and 3 in such a way that line
number 2 contains some broken part of next line which can
be considered as noise for line number 2. We can simply
remove this noise on the basis of width of the stroke or
location of the noise as it is at the bottom of the line or
considering isolated connected components. The problem of
line number 3 has been solved, as complete upper zone of
this line has been retained in it. Sometimes line number 3
can also have some portion of the lower zone of upper line
of big font size. This will be at the top of the line and can be
removed on the basis of stroke width or location or
considering isolated connected components.

Figure 22. Segmented lines using modified algorithm.

III. Results and Discussions

The algorithm proposed in this paper is useful for
segmenting multiple horizontally overlapping lines in
printed Indian Scripts. It also joins together the broken
components of an over segmented line. Various kinds of
strips and the percentage of occurrence of these strips have
been calculated for eight scripts as illustrated in the paper.
The entire database has been prepared scanning single
column news articles from eight printed Indian script
newspapers. The algorithm seglines segments the
overlapping lines accurately 96.45-99.79% times. The
overlapping lines in the different sized text in printed
newspapers in Gurmukhi script have correctly been

286 M.K. Jindal, R.K. Sharma and G.S. Lehal

segmented 98.12% of the time. The specific problem in this
case has been identified as the situation when there are two
consecutive lines of different font size. This problem has
successfully been solved in the proposed algorithm.

References

[1] Veena Bansal, Integrating knowledge sources in
Devanagari text recognition, Ph.D. thesis, IIT Kanpur,
INDIA, 1999.

[2] S. Harikumar, K. Jithesh, K. G. Sulochana, R. Ravindra
Kumar, “Script based line & character segmentation
techniques for Malayalam document images”, In
Proceedings of the International Symposium on
Machine Translation (iSTRANS 2004) New Delhi,
India, pp. 122-127, 2004.

[3] U. Pal, S. Datta, “Segmentation of Bangla
Unconstrained Handwritten Text”, In Proceedings of
the ICDAR (ICDAR’03), pp. 1128-1132, 2003.

[4] U. Pal, S. Sinha, B. B. Chaudhuri, “Multi-Script Line
identification from Indian Documents”, In Proceedings
of the ICDAR (ICDAR’03), pp. 880-884, 2003.

[5] U. Pal, B. B. Chaudhuri, “Automatic Separation of
Machine-Printed and Hand-Written Text Lines”, In
Proceedings of the ICDAR (ICDAR’99), pp. 645-648,
1999.

[6] J. Dholakia, A. Negi, S. R. Mohan, “Zone Identification
in the Printed Gujarati Text”, In Proceedings of the
ICDAR (ICDAR’05), pp. 272-276, 2005.

[7] B. B. Chaudhuri, U. Pal, “A complete printed Bangla
OCR system”, Pattern Recognition, vol. 31, no. 5, pp.
531-549, 1998,

[8] U. Pal, B. B. Chaudhuri, “Printed Devnagari script
OCR system”, Vivek, vol. 10, pp. 12-24, Jan. 1997.

[9] G. S. Lehal, Chandan Singh, “Text segmentation of
machine printed Gurmukhi script”, in Proceedings of
SPIE, vol. 4307, pp. 223-231, 2001.

[10] G. S. Lehal, Chandan Singh, “A technique for
segmentation of Gurmukhi text”, In Proceedings of the
9th International Conference on Computer Analysis of
Images and Patterns CAIP 2001, Warsaw, Poland, vol.
2124, pp. 191-200, 2001.

[11] G. S. Lehal, Optical Character Recognition of Machine
Printed Gurmukhi Text, Ph.D. thesis, Punjabi
University, Patiala, INDIA, 2001.

[12] U. Pal, B. B. Chaudhuri, “Indian Script character
recognition: a survey”, Pattern Recognition, vol. 37, pp.
1887-1899, 2004.

[13] S. Iliescu, R. Shinghal and R. Yee-Mian Teo,
“Proposed heuristic procedures to preprocess character
patterns using line adjacency graphs”, Pattern
Recognition, vol. 29, no. 6, pp. 951-976, 1996.

[14] B. B. Chaudhuri and U. Pal, “Skew angle detection of
digitized Indian script documents”, IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 19, no.
2, pp. 182-186, 1997.

Author Biographies
Manish Kumar Jindal received his Bachelors degree in science in 1996
and Post Graduate degree in Computer Applications from Punjabi
University, Patiala, India in 1999. He started his carrier as Lecturer in
computer application at Jaito centre of Punjabi university, Patiala. At
present he is working as Lecturer in Panjab University Regional Centre,
Muktsar, Punjab, India. His academic achievements include University
Gold medal in Post Graduation. He is currently pursuing Ph.D. degree from
Thapar Institute of Engineering and Technology, Patiala, Punjab, India. His
research interests include Character Recognition.

Professor Rajendra Kumar Sharma born at Shamil (UP, India) in 1966,
received his PhD degree in mathematics from the University of Roorkee
(Now, IIT Roorkee), India in 1993. He is currently working as professor at
Thapar Institute of Engineering and Technology (TIET), Patiala INDIA,
where he teaches, among other things, queuing models and its usage in
computer networks. He has been involved in the organization of a number
of conferences and other courses at TIET, Patiala. His main research
interests are in traffic analysis of Computer Networks, Neural Networks,
and Pattern Recognition.

Professor Gurpreet Singh Lehal received undergraduate degree in
Mathematics in 1988 from Punjab University, Chandigarh, India, and Post
Graduate degree in Computer Science in 1995 from Thapar Institute of
Engineering & Technology, Patiala, India and Ph. D. degree in Computer
Science from Punjabi University, Patiala, in 2002. He joined Thapar
Corporate R&D Centre, Patiala, India, in 1988 and later in 1995 he joined
Department of Computer Science at Punjabi University, Patiala. He is
actively involved both in teaching and research. His current areas of
research are- Natural Language Processing and Optical Character
recognition. He has published more than 25 research papers in various
international and national journals and refereed conferences. He has been
actively involved in technical development of Punjabi and has to his credit
the first Gurmukhi OCR, Punjabi word processor with spell checker and
various transliteration software. He was the chief coordinator of the project
“Resource Centre for Indian Language Technology Solutions- Punjabi”,
funded by the Ministry of Information Technology as well as the
coordinator of the Special Assistance Programme (SAP-DRS) of the
University Grants Commission (UGC), India. He was also awarded a
research project by the International Development Research Centre (IDRC)
Canada for Shahmukhi to Gurmukhi Transliteration Solution for
Networking.

