Shahmukhi to Gurmukhi Transliteration System:
A Corpus based Approach

Tejinder Singh Saini' and Gurpreet Singh Lehal?

! Advanced Centre for Technical Development of Punjabi Language, Literature & Culture,
Punjabi University, Patiala 147 002, Punjab, India
tej@pbi.ac.in
http://www.advancedcentrepunjabi.org
2 Department of Computer Science, Punjabi University, Patiala 147 002,
Punjab, India
gslehal@yahoo.com

Abstract. This research paper describes a corpus based transliteration system
for Punjabi language. The existence of two scripts for Punjabi language has
created a script barrier between the Punjabi literature written in India and in
Pakistan. This research project has developed a new system for the first time of
its kind for Shahmukhi script of Punjabi language. The proposed system for
Shahmukhi to Gurmukhi transliteration has been implemented with various
research techniques based on language corpus. The corpus analysis program has
been run on both Shahmukhi and Gurmukhi corpora for generating statistical
data for different types like character, word and n-gram frequencies. This
statistical analysis is used in different phases of transliteration. Potentially, all
members of the substantial Punjabi community will benefit vastly from this
transliteration system.

1 Introduction

One of the great challenges before Information Technology is to overcome language
barriers dividing the mankind so that everyone can communicate with everyone else
on the planet in real time. South Asia is one of those unique parts of the world where
a single language is written in different scripts. This is the case, for example, with
Punjabi language spoken by tens of millions of people but written in Indian East
Punjab (20 million) in Gurmukhi script (a left fo right script based on Devanagari)
and in Pakistani West Punjab (80 million), written in Shahmukhi script (a right to left
script based on Arabic), and by a growing number of Punjabis (2 million) in the EU
and the US in the Roman script. While in speech Punjabi spoken in the Eastern and
the Western parts is mutually comprehensible, in the written form it is not. The
existence of two scripts for Punjabi has created a script barrier between the Punjabi
literature written in India and that in Pakistan. More than 60 per cent of Punjabi
literature of the medieval period (500-1450 AD) is available in Shahmukhi script
only, while most of the modern Punjabi writings are in Gurmukhi. Potentially, all
members of the substantial Punjabi community will benefit vastly from the
transliteration system.

© A. Gelbukh (Ed.) Received 25/10/07
Advances in Natural Language Processing and Applications Accepted 07/12/07
Research in Computing Science 33, 2008, pp. 151-162 Final Version 22/01/08

152 Singh Saini T. and Singh Lehal G.

2 Related Work

Most of the available work in Arabic-related transliteration has been done for the
purpose of machine translation. In the paper titled "Punjabi Machine Transliteration
(PMT)" Malik A. 2006 [1] has demonstrated a very simple rule-based transliteration
system for Shahmukhi to Gurmukhi script. Firstly, two scripts are discussed and
compared. Based on this comparison and analysis, character mappings between
Shahmukhi and Gurmukhi scripts have been drawn and transliteration rules
formulated. Along with this only dependency rules have been formed for special

characters like aspirated consonants, non-aspirated consonants, Alif /[8], Alif Madda

[a], Vav s[v], Choti Ye «[j] etc. The primary limitation of this system is that this

system works only on input data which has been manually edited for missing vowels
or diacritical marks (the basic ambiguity of written Arabic scripf) which practically
has limited use. Some other transliteration systems available in literature are
discussed by Haizhou et al (2004) [3], Youngim et al (2004) [4], Nasreen et al (2003)
[5] and Stalls et al (1998) [9].

3 Major Challenges

The major challenges of transliteration of Shahmukhi to Gurmukhi script are as
follows:

3.1 Recognition of Shahmukhi Text without Diacritical Marks

Shahmukhi script is usually written without short vowels and other diacritical marks,
often leading to potential ambiguity. Arabic orthography does not provide full
vocalization of the text, and the reader is expected to infer short vowels from the
context of the sentence. Like Urdu, in the written Shahmukhi script it is not
mandatory to put short vowels below or above the Shahmukhi character to clear its
sound. These special signs are called "Aerab" in Urdu. It is a big challenge in the
process of machine transliteration or in any other process to recognize the right word
from the written text because in a situation like this, correct meaning of the word
needs to be distinguished from its neighboring words or, in worst cases, we may need
to go into deeper levels of n-gram.

3.2 Filling the Missing Script Maps

There are many characters which are present in the Shahmukhi script, corresponding

to those having no character in Gurmukhi, e.g. Hamza ¢ [1], Do-Zabar E [en], Do-Zer

© [In], Aen g[7] etc.

Shahmukhi to Gurmukhi Transliteration System: A Corpus based Approach 153

3.3 Multiple Mappings

It is observed that there is multiple possible mapping into Gurmukhi script
corresponding to a single character in the Shahmukhi script as shown in Table 1.

Table 1. Multiple Mapping into Gurmukhi Script

Shahmukhi

Name Character Unicode Gurmukhi Mappings
Vav 5] 0648 2[v], ¥ [o], $[O], & [v], & [u], € [o]
Ye Choti S[i] 0649 @ (1, f 1], & [e], See], Ail, & [i]

3.4 Word-Boundary Mismatch

Urdu Zabata Takhti (UZT) 1.01 [2] has the concept of two types of spaces. The first
type of space is normal space and the second type of space is given name Hard Space
(HS). The function of hard space is to represent space in the character sequence that
represents a single word. In Unicode character set this Hard Space is represented as
Zero Width Non Joiner (ZWNJ). But it is observed that in the written text normal
space is used instead of hard space. Therefore, transliterating a single word of
Shahmukhi with space in between will generate two tokens of the same word in
Gurmukhi script.

4 Script Mappings
4.1 Gurmukhi Script

The Gurmukhi script, derived from the Sharada script and standardised by Guru
Angad Dev in the 16th century, was designed to write the Punjabi language. The
meaning of "Gurmukhi" is literally “from the mouth of the Guru". As shown in Table
2 the Gurmukhi script has forty one letters, including thirty eight consonants and three
basic vowel sign bearers (Matra Vahak). The first three letters are unique because
they form the basis for vowels and are not consonants. The six consonants in the last
row are created by placing a dot at the foot (pair) of the consonant (Naveen Toli).

There are five nasal consonants (2[na], [na], €[], d[n], H[M]) and two additional
nasalization signs, bindi <} [n] and tippi < [n] in Gurmukhi script. In addition to this,
there are nine dependent vowel signs (&[u], & [u], -:2\:-[0], ome], fo[r), A, Sel,
-::\:-[a], 'ii)i-‘[O]) used to create ten independent vowels (8 [u], g [u], € [0], ™ [a], ™ [a],
111, & [i], € [e], n [e], 1 [O]) with three bearer characters: Ura 8[u], Aira ™ [9]

and Iri €[1]. With the exception of Aira ™ [8] independent vowels are never used

without additional vowel signs. Some Punjabi words require consonants to be written

154 Singh Saini T. and Singh Lehal G.

in a conjunct form in which the second consonant is written under the first as a
subscript. There are only three commonly used subjoined consonants as shown here

Haha J[h] (usage &[n] ++J[h] = & [n"]), Rara J[r] (usage YU[p] +&+3[r] =Y [pr"])
and Vava <[v] (usage H[s] +3+<[v] = H [sv]).

Table 2. Gurmukhi Alphabet

S o] € Matra Vahak
H[s] J[h] Mul Varag
ak] dk' dMg] wk' S[ne] Kavarg Toli
Syl Sl Ad3] B[d3"] Ene] Chavarg Toli
<t ot 3d =[d] En Tavarg Toli
3] =[] <Td] Td] aln] Tavarg Toli
Ulp] S[p Sb] 3" Hm] Pavarg Toli
|l Skl B[=lvl =[] Antim Toli

HJl HIx] ay] Hlz] <[f] B[l Naveen Toli

4.2 Shahmukhi Script

The meaning of "Shahmukhi" is literally “from the King's mouth". Shahmukhi is a
local variant of the Urdu script used to record the Punjabi language. It is based on
right to left Nastalique style of the Persian and Arabic script. It has thirty seven
simple consonants, eleven frequently used aspirated consonants, five long vowels and
three short vowel symbols.

4.3 Mapping of Simple Consonants

Unlike Gurmukhi script, the Shahmukhi script does not follow a ‘one sound-one
symbol’ principle. In the case of non-aspirated consonants, Shahmukhi has many
character forms mapped into single Gurmukhi consonant. This has been highlighted
in Table 3 below.

4.4 Mapping of Aspirated Consonants (AC)

In Shahmukhi script, the aspirated consonants are represented by the combination of a
simple consonant and HEH-DAOCHASHMEE 2[h]. Table 4 shows 11 frequently
used aspirated consonants in Shahmukhi corresponding to which Gurmukhi script has

unique single character except the last one J [("] having compound characters.

Shahmukhi to Gurmukhi Transliteration System: A Corpus based Approach 155

Table 3. Shahmukhi Non-Aspirated Consonents Mapping

Sr. Char Code Gurmukhi Code Sr. Char Code Gurmukhi Code
1 H[b] 0628 g [b] 0A2C 20 &[7] 0639 " [o] 0A05
3 <[t 062A 3 [1] 0A24 22 <[f] 0641 2 [f] 0AS5E
4 os] 062B g 0A38 23 G[q] 0642 [k 0A15
5 zidg] 962C m[ds] O0AIC 24 Sk 06A9 F[K] 0AIS
6 =ity 0086 g 0A1A 25 S[g] 06AF gqr[g] 0A17
8 ¢lx] 062E y[x] 0A59 27 om] 0645 ¥ [m] 0A2E
9 062F 0A26 28 ¢[n] 0646 &[n], 0A28,
[d] < [d] g 028
10 Yz] 0630 #[z] 0ASB 29 a[nl 06BB & [0A23
11] 0631 gF[r] 0A30 30 s[v] 0648 =[v] 0A35
12 J[z] 0632 H[z] 0A5B 31 e[h] 06Cl1 g[h] 0A39
13 53] 0698 7 [z] 0ASB 32 ¢[j] 06CC wIj] 0A2F
14 &s] 0633 w[s] 0A38 33 ~[j] 06D2 gwJj] 0A2F
15 & 0634 0A36 34 a[h] O06BE og[h 0A4D
el Eal S +0A39
16 u=[s] 0635 w[s] 0A38 35 &) 0679 & It] 0A1F
17 o=[z] 0636 [z] 0ASB 36 5d] 0688 3 [0A21
18 L[t] 0637 3 It] 0A24 37 30 0691 g [l 0A5C
19 L[z] 0638 H[z] 0ASB
Table 4. Aspirate Consonants (AC) Mapping
Sr. AC Code Gurmukhi Code Sr. AC Code Gurmukhi Code
A[h] (06BE) A[h] (06BE)
2 «4p] O7E gp 0A2B. 8 &1 0679 B[] 0A20
3 A 062A g 0A25 9 «[k] 06A9 Y [k] 0A16
4 ayq 0688 g[q 0A22 10 <8[g] 06AF w[g] 0A18
L 0ASC
5 a[d3] 062C g [d3] 0AID 11 230 0691 4l 0A4Di
0A39
6 [t 0686 & [t] 0A1B

156 Singh Saini T. and Singh Lehal G.

Table 5. Shahmukhi Long Vowels Mapping

Sr. Vowel Code Mapping Code Sr. Vowel Code Mapping Code

o] 0627 | _me] O0AOS 4 o] 0648 _or, 0A35

| or[e] OA3E 3[0] O0A4B
ifa] 062 i,wrpq 0A06 ,3[0] 0A4C
sli] 0649 o, g[i] O0AO8 o] 0A41
s— W [j] 0A2F 35— [u] 0A42
s OAF 6] OAI3
s— @[] 0A40 5] oD2 <—Ble] OAOF
s— O [e] 0A47 il 0A2F

L3 [am) 0A48

Table 6. Shahmukhi Short Vowels Mapping

Sr. Vowel Unicode Name Gurmukhi Unicode

1 o [1] 0650 Zer f 1] 0A3F
2 j [U] 064F Pesh _. [U] 0A4B
3 e [0] 064E Zabar - -

Table 7. Mapping of other Diacritical Marks or Symbols

Sr. Shahmukhi Unicode Gurmukhi Unicode

1 Noon ghunna ¢ [n] 06BA 5[] 0A02
positional i

2 Hamza e [1] 0621 dependent

3 Sukun 0652 & [un] 0A42, 0A28

4 Shad 0651 < 0A71

5 Khari Zabar © [g] 0670 =7 [8] 0A3E

6 do Zabar olen] 064B &[n] 0A28

7 do Zer o[m] 064D fr&[In] 0A3F, 0A28

Shahmukhi to Gurmukhi Transliteration System: A Corpus based Approach 157

4.5 Mapping of Vowels

The long and short vowels of Shahmukhi script have multiple mappings into
Gurmukhi script as shown in Table 5 and Table 6 respectively. It is interesting to
observe that Shahmukhi long vowel characters Vav s[v] and Ye ,- [j] have vowel-
vowel multiple mappings as well as one vowel-consonant mapping.

4.6 Mapping other Diacritical Marks or Symbols

Shahmukhi has its own set of numerals that behave exactly as Gurmukhi numerals do
with one to one mapping. Table 7 shows the mapping of other symbols and diacritical
marks of Shahmukhi.

S Transliteration System

The transliteration system is virtually divided into two phases. The first phase
performs pre-processing and rule-based transliteration tasks and the second phase
performs the task of post-processing. In the post-processing phase bi-gram language
model has been used.

5.1 Lexical Resources Used

In this research work we have developed and used various lexical resources, which
are as follows:

Shahmukhi Corpus: There are very limited resources of electronic information of
Shahmukhi. We have created and are using a Shahmukhi corpus of 3.3 million words.
Gurmukhi Corpus: The size of Gurmukhi corpus is about 7 million words. The
analysis of Gurmukhi corpus has been used in pre and post-processing phases.
Shahmukhi-Gurmukhi Dictionary: In the pre-processing phase we are using a
dictionary having 17,450 words (most frequent) in all. In the corpus analysis of
Shahmukhi script we get around 91,060 unique unigrams. Based on the probability of
occurrence we have incorporated around 9,000 most frequent words in this dictionary.
Every Shahmukhi token in this dictionary structure has been manually checked for its
multiple similar forms in Gurmukhi e.g. token (! [as] has two forms with weights' as

feH {59998} [1s] (this) and € {41763} [Us] (that).

Unigram Table: In post-processing tasks we are using around 163,532 unique
weighted unigrams of Gurmukhi script to check most frequent (MF) token analysis.
Bi-gram Tables: The bi-gram queue manager has around 188,181 Gurmukhi bi-
grams resource to work with.

! Weights are unigram probabilities of the tokens in the corpus.

158 Singh Saini T. and Singh Lehal G.

All Forms Generator (AFG): Unigram analysis of Gurmukhi corpus is used to
construct AFG Component having 86,484 unique words along with their similar
phonetic forms.

5.2 Pre-Processing and Transliteration

In pre-processing stage Shahmukhi token is searched in the Shahmukhi-Gurmukhi
dictionary before performing rule-based transliteration. If the token is found, then the
dictionary component will return a weighted set of phonetically similar Gurmukhi
tokens and those will be passed on to the bi-gram queue manager. The advantage of
using dictionary component at pre-processing stage is that it provides more accuracy
as well as speeds up the overall process. In case the dictionary lookup fails then the
Shahmukhi token will be passed onto basic transliteration component. The Token
Converter accepts a Shahmukhi token and transliterates it into Gurmukhi token with
the help of Rule Manager Component. Rule Manager Component has character
mappings and rule-based prediction to work with. Starting from the beginning, each
Shahmukhi token will be parsed into its constituent characters and analyzed for
current character mapping along with its positional as well as contextual dependencies
with neighboring characters. Shahmukhi script has some characters having multiple
mappings in target script (as shown in Table 1 and 5).

Therefore, to overcome this situation extra care has been taken to identify various
dependencies of such characters in the source script and prediction rules have been
formulated accordingly to substitute right character of target script. Ultimately, a
Gurmukhi token is generated in this process and that will be further analyzed in the
post- processing activities of transliteration system. Figure 1 shows the architecture of
this phase.

5.3 Post-Processing

The first task of this phase is to perform formatting of the Gurmukhi token according
to Unicode standards. The second task in this phase is critical and especially designed
to enable this system to work smoothly on Shahmukhi script having missing
diacritical marks. The input Gurmukhi token has been verified by comparing its
probability of occurrence in target script with predefined threshold value. The
threshold value is minimum probability of occurrence among most frequent tokens in
the Gurmukhi corpus. If the input token has more probability than the threshold value,
it indicates that this token is most frequent and acceptable in the target script.
Therefore, it is not a candidate for AFG routine and is passed on to the bi-gram queue
manager with its weight of occurrence.

On the other hand, a token having probability of occurrence less than or equal to the
threshold value becomes a candidate for AFG routine. In AFG routine input
Gurmukhi token is examined by All Forms Generator (AFG) with the help of AF
manager. AF Manager will generate a phonetic code corresponding to the characters
of input Gurmukhi token. This phonetic code will be used by Similar Forms
Generator (SFG) routine for producing a list of weighted Gurmukhi tokens with
similar phonetic similarities. The suggestion rules will be used to filter out undesired

Shahmukhi to Gurmukhi Transliteration System: A Corpus based Approach 159

tokens from the list. This final list of Gurmukhi tokens will then pass on to bi-gram
queue manager. The phonetic code generation rules along with suggestion rules play a
critical role in the accuracy of this task.

5.4 Bi-gram Queue Manager

The system is designed to work on bi-gram language model in which the bi-gram
queue of Gurmukhi tokens is maintained with their respective unigram weights of
occurrence. The bi-gram manager will search bi-gram probabilities from bi-gram
table for all possible bi-grams and then add the corresponding bi-gram weights. After
that it has to identify and mark the best possible bi-gram and pop up the best possible
unigram as output. This Gurmukhi token is then returned to the Output Text
Generator for final output.

The Output Text Generator has to pack these tokens well with other input text which
may include punctuation marks and embedded Roman text. Finally, this will generate
a Unicode formatted Gurmukhi text as shown in Figure 2.

Unicode Encoded Shahmukhi Text

Transliteration and Pre-Processing
GTA: Gurmukhi Tokens Array

Input String Parser

Input String Token ¢

Shahmukhi Tokenizer Bi-Gram
Shahmukhi Token GTA Queue
A 4 S hi Dic Manager
. earch in ¢
Pre-Processing Dictionar ictionary > ofPos.t-
y Manager Processing
Found?
¢ No icti onents
N Shahmukhi Token All Forms
Transliteration >
Component Token
< Converter Shahmukhi-Gurmukhi
Gurmukhi Token Dictionary
Rule Manager Probability weights

Character Mappings

Transliterated
Gurmukhi Token

Transliteration
Post-Processing Prediction Rules

Rule-based Prediction

Fig. 1. Architecture of Transliteration and Pre-Processing

160 Singh Saini T. and Singh Lehal G.

Gurmukhi Token
: Post-Processing
Token Formatting GTA: Gurmukhi Tokens Array
Gurmukhi Token
All Forms » All Forms
Generator (AFG) Manager
GTA

AFG Component

GTA

y

\ Phonetic Similar

Bi-Gram Queue Manager Code Forms
Generator Generator

L

oram Component

Bi-

Code Generation Rules

Suggestions Rules

Out Put Text Pop: The Best

Probability Weights
Generator

v
Unicode Encoded Gurmukhi Text

Fig. 2. Architecture of Post-Processing

6 Results and Discussion

The transliteration system was tested on a small set of poetry, article and story. The
results reviewed manually are tabulated in Table 8. As we can observe, the average
transliteration accuracy of 91.37% has been obtained.

Table 8. Transliteration Results

Type Transliterated Tokens Accuracy

Poetry 3,301 90.63769 %
Article 584 92.60274 %
Story 3,981 90.88043 %
Total 7,866 91.37362 %

Comparison with the Existing System

In actual practice, Shahmukhi script is written without short vowels and other
diacritical marks. The PMT system discussed by Malik A. (2006) claims 98%
accuracy only when the input text has all necessary diacritical marks for removing

Shahmukhi to Gurmukhi Transliteration System: A Corpus based Approach 161

ambiguities. But this process of putting missing diacritical marks is not practically
possible due to many reasons like large input size, manual intervention, person having
knowledge of both the scripts and so on. We have manually evaluated PMT system
against the following Shahmukhi input published on a web site and the output text is
shown as output-A in table 9.The output of proposed system on the same input is
shown as output-B. The wrong transliteration of Gurmukhi tokens is shown in bold
and italic and the comparison of both outputs is shown in table 10.

Table 9. Input/Output of PMT and Proposed Systems

Input text (right to left)

LR il s a8l 20 48 Wagi Jaa y B (b 26595 st Dy e oal 02> g Kol
R 286 1 Sy st o ol O Ol (s JU Gl (g5 s il (L5 S
S S B 20 e A8 o) S 185 O A 12 G b i Ul 05 e)
i Ol el G Om cdgie JU s S el 2 5y (e ileie A) ga
VI o ol Ll Blas om0 8 (e 5 Cleg oo s () -0 3 S e 5 s) 5 S e
& sl dasb Gos e 0 G 2 s S S S ale S s (S e . o

S

Output-A of PMT system (left to right)

WH B TTAC #H FI5 USHEH 3 de It 3T YIBHYS 3T W € BY TF SH3HT
It w7 ATttt I3 & FET 5T HIRF IS I3 MR e & g 9d& € It
Fae It UJ »yd 7F 3=adt 8871 wre A8 3 37 587 AT § §7 93 € &d1 Id FI5
HE Myd wyd FEUST EF 93 WIHT 3 709 3% HIEEEE I3 »Udl 997, mys
HIHET, WUS UeaZF 3 WUS TIH 3 H13 JIde I3 WUdTl IHf UeTd 3 H'3 S3< I3l Ul
ST g wieH dt 37T J7 AdaTdT 3 8 J WTH & IT USTET HE € 555 €3 979 Udf
JIT @RS Ht gTBE B3I

Output-B of proposed system (left to right)

fen 918 feg 7€ wirt 993 Uit & ue of 3t fifiuz 377 i @ 8y feg gt
aretott AFtrt HaTEtt J9 <t e a8 Higar geht 351 wiHt €R 3 it 39 & B
J9€ I Ug MUE HY & SFSTES J7| for BT A9 3 &3 Ag3 fed J 9 9793 € Sa1 91 543
HE MU »UE HEUST &7 83 G300 3 799 378 Ha'6€ J&| »uet mems, Mud
AfgmmaTg, MU fugag 3 MU feal 3 Hie 9ae Isl Wiyt aHt ugTe 3 Hie Jae Ja|
ug Ar3T g1 wre Jf fsarsT J1 HadTat 3 & J mH & 39 Ut HE € ges fes a9 ydt
39t »ens dt afde I

Table 10. Comparison of Output-A & B

Output Transliteration Tokens Accuracy
Type Total Wrong Right %

A 116 64 52 44.8275

B 116 02 114 98.2758

Clearly, our system is more practical in nature than PMT and we got good
transliteration with different inputs having missing diacritical marks. But we are still
having erroneous transliterations by the system. The main source of error is the

162 Singh Saini T. and Singh Lehal G.

existence of vowel-consonant mapping between the two scripts as already shown in
table 5. In some of the cases the bi-gram approach is not sufficient and we need some
other contextual analysis technique. In other cases, system makes errors showing
deficiency in handling those tokens which do not belong to common vocabulary
domain. These observations point to places where the system can be improved and we
hope to study them in the near future.

Acknowledgments. This research work is sponsored by PAN ASIA ICT R&D Grants
Programme for Asia Pacific http://www.apdip.net and the Beta version of this
program is available online at http://s2g.advancedcentrepunjabi.org. We would like to
thank Sajid Chaudhry for providing us data for Shahmukhi corpus.

References

1. Malik, M. G. A.: Punjabi Machine Transliteration. In Proceedings of the 21st
International Conference on Computational Linguistics and 44th Annual Meeting
of the ACL (2006) 1137-1144.

2. Afzal, M., Hussain S.: Urdu Computing Standards: Urdu Zabta Takhti (UZT) 1.01.
In proceedings of the IEEE INMIC, Lahore (2001).

3. Haizhou, L., Min, Z., and Jian S.: A Joint Source-Channel Model for Machine
Transliteration. In Proceedings of the 42nd Annual Meeting of the Association for
Computational Linguistics (2004) 159-166.

4. Youngim, J., Donghun, L., Aesun, Y., Hyuk-Chul, K.: Transliteration System for
Arabic-Numeral Expressions using Decision Tree for Intelligent Korean TTS, Vol.
1. 30th Annual Conference of IEEE (2004) 657-662.

5. Nasreen Abdululjaleel, leah S. Larkey: Statistical Transliteration for English-
Arabic Cross Language Information Retrieval. Proceedings of the 12th
international conference on information and knowledge management (2003) 139-
146.

6. Yan, Q., Gregory, G., David A. Evans: Automatic Transliteration for Japanese-to-
English Text Retrieval. In Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in information retrieval (2003)
353-360.

7. Arbabi, M., Fischthal, S. M., Cheng, V. C., and Bart E.: Algorithms for Arabic
Name Transliteration. IBM Journal of research and Development (1994) 183-193.

8. Knight, K., and Graehl, J.: Machine Transliteration. In Proceedings of the 35th
Annual Meeting of the Association for Computational Linguistics (1997) 128-135.

9. Stalls, B. G. and Kevin K.: Translating Names and Technical Terms in Arabic
Text. COLING ACL Workshop on Computational Approaches to Semitic
Languages (1998) 34-41.

