
Optical Character Recognition of Gurmukhi Script using
Multiple Classifiers

Gurpreet Singh lehal
Punjabi University, Patiala

India.
+91-98154-73767
gslehal@gmail.com

ABSTRACT
In this paper, we present a robust and font independent
Gurmukhi OCR system, which performs reasonably well on old
documents as well. The OCR is based on four classifiers
operating in serial and parallel mode. For combining the results
of the classifiers operating in parallel mode, a corpus based
weighted voting method is used. Combining multiple classifiers
in such a way, that their individual weaknesses are compensated
while their individual strengths are preserved, results in
significantly better performance than what can be achieved with
a single classifier. The problem of broken characters, which
frequently appear in old documents, has also been tackled using
a structural feature based algorithm.

Keywords
Gurmukhi OCR, multiple classifiers, broken characters

1. INTRODUCTION
The idea of combining classifiers for increasing the recognition
accuracy has been widely used in recent pattern recognition
applications[1-5]. It has been experimentally shown that
combination of several complementary classifiers leads to
classifiers with improved performance. There are a number of
classification algorithms available developed from different
theories and methodologies. Usually, for a specific application
problem, each of these classifiers could reach a certain degree of
success, but generally none of them is totally perfect for
practical applications. Similarly, for a specific recognition
problem, there are often numerous types of features which could
be used to represent and recognize patterns. These features are
also represented in very diversified forms and it is rather hard to
lump them together for one single classifier to make a decision.
As a result, multiple classifiers are needed to deal with the
different features [6]. It also results in a general problem how to
combine those classifiers with different features to yield the
improved performance.

In this paper, we present a multiple classifier based Gurmukhi
OCR based on four classifiers operating in serial and parallel
mode. For combining the results of the classifiers operating in
parallel mode, a corpus based weighted voting method is used.
We had earlier developed a Gurmukhi OCR, with recognition
accuracy of around 97%, which used two classifiers in serial
mode [7]. Though the OCR performed very well on good quality
text, its accuracy went down for bad quality text images. To
increase the accuracy of the OCR, particularly for poor quality
documents, we added two more classifiers in parallel to the
existing one. The experiments, which are discussed in following
sections, have given very encouraging results. Another problem,
we faced for recognition of old documents was the presence of

broken characters. Many papers have appeared in literature for
handling this problem[8-12]. Most of the techniques suggested
in literature use character image restoration techniques
simultaneously with the recognition modules. In this paper we
present a structural feature based algorithm to detect and join
broken word and character components in Gurmukhi text, which
works independently of recognition module.

2. CHARACTERISTICS OF GURMUKHI

SCRIPT
Gurmukhi script is used primarily for the Punjabi language,
which is the world’s 12th most widely spoken language. The
structural properties of the Gurmukhi script, from OCR point of
view are:
• Gurmukhi script is syllabic in nature. Gurmukhi script

consists of 41 consonants called vianjans, 9 vowel symbols
called laga or matras, 2 symbols for nasal sounds (◌ਂ , ◌ੰ),
one symbol for reduplication of sound of any consonant (
◌ੱ) and three half characters (◌੍ਹ ◌੍ਵ ◌੍ਰ), which lie at
the feet of consonants. The complete Gurmukhi character
set is shown in Fig 1.

Figure 1. Gurmukhi Character Set

• A majority of the characters have a horizontal line at the
upper part. The characters of words are connected mostly
by this line called head line and usually there is no vertical
inter-character gap in the letters of a word. The words are,
however, separated with blank spaces.

• A word in Gurmukhi script can be partitioned into three
horizontal zones (Fig 1). The upper zone denotes the
region above the head line, where vowels reside, while the
middle zone represents the area below the head line where
the consonants and some sub-parts of vowels are present.
The lower zone represents the area below middle zone
where some vowels and certain half characters lie in the
feet of consonants.

• All the characters in the middle zone, touch the headline at
least once.

• The vertical line if present in a character, is mostly present
on the right most end of the character.

• The consonant height is usually greater than its width. The
exceptions are ਅ and ਘ

Figure 2. Three zones of a word in Gurmukhi script

3. SYSTEM ARCHITECTURE
In our present work, we have used four classifiers for
recognition of the Gurmukhi text image. The first two classifiers
operate in serial mode. The result of these classifiers is next
combined in parallel mode with the other two classifiers using a
rule based voting method. The system architecture is shown in
Fig. 3.

 Figure3. Multi Classifier Gurmukhi OCR System
Architecture

The word images are extracted from the text image and after
skew correction and cleaning are sent to the recognizers for
character segmentation, feature extraction and classification. It

was found that frequently in old documents, the word images
had broken headlines and characters, which resulted in low
recognition accuracy. To increase the recognition accuracy it
became necessary to repair these broken headlines and
characters.

In our present work, we have developed a structural feature
based algorithm to detect and join broken word and character
components in Gurmukhi text. We tackle the breakage in words
at two levels: breakage in headline and breakage in characters.

Figure 4. Sample word images with broken headlines

4. HANDLING BROKEN HEADLINES IN

GURMUKHI WORD IMAGES
As discussed above, in a Gurmukhi word the middle zone
characters are glued along the headline. The character segmentor
expects the middle zone characters to be touching the headline,
with no vertical inter-character gap. But in type written and old
text, as well as locally skewed word images, the headline is
frequently broken and the characters are not aligned along the y-
axis as a result the word image is split into a group of single or
multiple characters (Fig. 4). This creates problem for the
character segmentor as it becomes difficult to identify the
position of the headline and the components lying above and
below it. Thus it becomes necessary to join the broken headlines
and align the headline of the characters of the word by
displacing the character images along the y-axis. To solve the
problem, first the horizontal row in the word image
corresponding to the word headline (WHL) in the upper half of
the word image is determined, based on the following four
factors:
4.1 Position of the headline in the sentence. This is determined

as the horizontal row in the sentence image with having
maximum number of black pixels.

4.2 Position of the headline in the previous two words. It may
happen that there is some local skew in the word images
due to warping or tilt at end of the sentences, as a result the
word headline may not be aligned with the sentence
headline.

4.3 Row with maximum horizontal span of black pixels in the
word image.

4.4 Row having maximum number of black pixel count in the
word image.

Once WHL is determined, the word image is decomposed into
connected components (CCs) separated by vertical white space.
Each of these CC could represent a group of one or more
characters.
For each of the Component, determine the row corresponding to
the position of component headline (CHL) satisfying one or both
of the following criteria in the following order:

• Row with maximum horizontal span of black pixels.
• Row having maximum number of black pixel count.

• Row should be at most d pixels apart from WHL
where d = 0.2*height of CC

Let delta = WHL – CHL
Move all the pixels of CC by delta pixels along y axis.
Lastly, join all the CCs by drawing a horizontal line between the
CCs along WHL.
Fig. 5 displays some of the sample word images with broken
headlines, which were joined back by applying the above
algorithm.

Figure 5. Some sample reconstructed broken word headlines

5. BROKEN CHARACTERS IN

GURMUKHI
For the first two classifiers, which operate in serial mode, the
image is thinned (reduced to single pixel width) before being
sent for recognition. These classifiers use structural features and
are thus highly sensitive to cuts and joints. Thus it was necessary
to repair the broken characters in such skeletonized images. An
in-depth analysis was made of the common broken characters in
Gurmukhi. For this purpose about 2500 words containing
broken characters scanned from old books were collected. The
broken characters can be broadly categorized as:

• Characters broken from the headline
• Characters split vertically into non-overlapping

bounding boxes
• Characters split horizontally into non-overlapping

bounding boxes
• Character split into two or more parts with

overlapping bounding boxes.
It is to be noted that we ignore the headline, while looking for
overlapping regions.

Table 1. Categories of broken characters in Gurmukhi

Cat. Image
1

2

3

4

As already discussed above, a Gurmukhi word can be
partitioned into three zones. We found that the majority of
broken character segments are present in the middle zone. It is
also to be noted that there are six multiple component characters
in the middle zone and care has to be taken that we do not join
those components. Also many times, the characters in the lower
zone are very closely placed near the middle zone characters and
they should not treated as broken components of middle zone
characters and joined with them. The broken components have
to be joined with the appropriate components to form the
character. Decision also has to be taken which connected
component pairs have to be joined and which were to be
ignored. All this calls for a detailed study of the structure of
Gurmukhi characters and words, while designing the algorithm.

First the position of the headline in the word image is noted
and the headline is then rubbed off. The word image is then
decomposed into connected components (CCs) and the relevant
information about the CCs is extracted and stored. The closely
lying CCs are determined. It is observed that in many cases,
genuinely separated CCs, are lying very close to each other and
care has to be taken that they are not joined. We have
categorized such closely lying CCs, which should not be joined
in Table 2.

Table 2. Closely lying Gurmukhi Connected Components to
be ignored for joining

Category CC Images with headlines
removed

1. CCs of middle zone
characters containing dot
like symbol at feet of
characters called nukta

2. Closely lying CCs of the
characters in middle and
lower zone

3. Vertically closely lying or
overlapping CCs

4. CCs which are vertically
very close and one of the CC
is a vertical line

For the joinable pairs, their joining points are found. These
joining points could be, depending on the overlapping category,
endpoints, bend points, joints or boundary points in the CC.
We define the endpoint, joint, bend point and boundary point as
follows:
• End Point
A black pixel not lying on the y-axis corresponding to the
headline and with only one black pixel in its 3 x 3
neighbourhood.
• Joint
A black pixel not lying on the y-axis corresponding to the
headline and having three or more black pixels in its 3 x 3
neighbourhood.
• Bend Point
A white pixel where two or more lines meet at 90 or 45 degrees.
• Boundary Point
 A black pixel lying on one of the boundary of the CC.

These points are extracted from the CCs and the point pairs,
where the first point is from one CC and second point from the
other CC, lying within the threshold value are collected. If no
such pair is found then the CCs are not joined. The decision to

join the CCs is kept pending, till all the CC pairs have been
processed. If any of the joining points have some common
points, then only the nearest pair is retained. The points are then
joined by drawing lines between them. If there remain some
CCs, which are not touching the headline, we use the structural
property of Gurmukhi script that all the characters in the middle
zone touch the headline at least once and increase the threshold
value to test if they can be joined with any other CC or headline.
The complete algorithm is described in the next section.

6. Algorithm for Repairing Skeletonized

Gurmukhi Characters
The algorithm to repair the skeletonized Gurmukhi characters is
as follows:

1. Skeletonize the word image.
2. Determine the position of the headline in the word

image and rub off the headline.
3. Decompose the word image into connected

components. Create the list, CList, of all the connected
components (CCs) which lie horizontally below the
position of headline in the middle zone. For each of
the CC, store the information about the global position
of its bounding box, number and position of end
points, joints, bend points and boundary points in the
CC and other such relevant information.

4. Sort the CCs along the x-axis. Find the heights of the
CCs touching the headline. Set threshold = (height of
the tallest CC) / 4.

5. Find all pair of CCs, whose bounding boxes are at
most threshold distance apart. Set their overlap type
as
• 0 if the bounding boxes overlap horizontally and

vertically
• 1 if the bounding boxes share some common

points along x-axis, but not along y-axis.
• 2 if the bounding boxes share some common

points along y-axis, but not along x-axis.
• 3 if the bounding boxes do not share any

common points in x or y axis.
6. If for any pair of CCs, CC1 and CC2, if CC1 lies in

the lower quarter of the word image along y-axis,
check that:
• The minimum value of bounding box of CC1

along y-axis should not be greater than the
median height of the CCs touching the headline.

• The area of CC1 should be at least 2*threshold
pixels.

• If the overlap type is 0, then CC1 should not lie
in the middle or left of CC2.

7. If any of the above condition is false, remove the
connected component pair from the list. This is to
avoid joining the nukta signs and the characters lying
in lower zone with the middle zone characters
(Category 1 and 2 of Table2).

8. If overlap type is 0, set thresh = 1.25*threshold.
9. Let S1 = Set of all endpoints, bend points and joints in

CC1.
10. Let S2 = Set of all endpoints, bend points and joints in

CC2.

11. Find C= Set of all pairs of points from S1 and S2
which lie within thresh distance.

12. If for any pair, their bounding boxes overlap, retain
the smaller distance pair and delete the other pair to
avoid creation of cycles.

13. If overlap type is 1 or 3, set thresh = threshold.
Assume CC1 is nearer to headline.

14. Let S1 = Set of all endpoints, bendpoints, joints and
boundary points lying along the lower horizontal
boundary of the bounding box of CC1.

15. Let S2 = Set of all endpoints, bend points, joints and
boundary points lying along the upper horizontal
boundary of the bounding box of CC2.

16. Find C= Set of all pairs of points from S1 and S2
which lie within thresh distance.

17. If overlap type is 2, set thresh = threshold. Assume
CC1 occurs before CC2 in the sorting order along x-
axis. If CC1 is a vertical line or the width to height
ratio of the bounding box formed by joining CC1 and
CC2 is greater than 1.25 then ignore this pair for
merging. This is to take care that the closely lying
characters are not merged together (Category 3 and 4
Table2).

18. Let S1 = Set of all endpoints, bendpoints, joints and
boundary points lying along the right vertical
boundary of the bounding box.

19. Let S2 = Set of all endpoints, bend points and joints
and boundary points lying along the left vertical
boundary of the bounding box of CC2.

20. If CC2 is a vertical line then exclude the joints and
boundary points from S1. This is to avoid joining CCs
similar to first and third pairs of CCs of category 4 in
Table 2, as their nearest joining points lying within the
threshold are on boundary or on joints.

21. Find C= Set of all pairs of points from S1 and S2
which lie within thresh. If both the points in a pair are
boundary points, remove that pair.

22. Examine all the candidate pairs in set C. If any pair
has a common co-ordinate point, retain the one having
smaller distance.

23. At the end join all the candidate pairs in set C by
drawing a straight line between them. Update CList,
the list of Connected Components, by replacing the
CCs which have been joined with the new merged CC.

24. Let SList be the sublist of CList containing connected
components not touching the headline. If SList is not
empty, then add the skeletonized image of headline to
CList.

25. If SList empty then Stop, else
26. Set thresh = 1.5 * threshold. Repeat the steps 5 to 11

and then stop. Instead of taking both pairs of CCs
from Clist, one element is from CList and second from
SList. This is to ensure the Gurmukhi Script property
that all the characters in the middle zone, touch the
headline at least once. So if we find a CC not touching
the headline, then it is a candidate for joining with
either the headline or some other CC which is
touching the headline.

The algorithm was tested on a set of 2500 words containing
broken characters and in 82.3% of cases, the broken components
were correctly joined together to form a recognizable unit, while
in 4.9% of cases, the components were wrongly joined and in

12.8% of cases the broken components were not joined with any
other component. Some sample images are shown in Fig. 6. The
first image in each row is the thinned binary image of the word.
The second image is the image obtained after joining the broken
components and smoothening the headline.

Figure 6. Sample broken character images repaired

7. CLASSIFIERS USED IN GURMUKHI

OCR
As already mentioned, we have used four classifiers in our

Gurmukhi OCR system. For the first two classifiers, which
operate in serial mode, the image is skeletonized before being
sent for recognition. As an example, we have in Fig. 7(a), a
word image for recognition. The image after skew correction
and headline repair is sent to the C2 and C3 classifiers is in Fig.
7 (b), while the same image after skeletonization and headline
smoothening (Fig 7c) is sent is to C1 classifier. The classifier
C1 is a combination of two classifiers (Binary Tree Classifier
and KNN Classifiers) , which operate in serial mode. The
details are available in [7].

Figure7.
a) Original Image b) Repaired Image c) Thinned Image

The binary tree classifier, operates on middle zone
characters and its purpose is to classify the patterns into classes
of similar looking characters. The purpose is to precisely divide
the set of characters lying in middle zone into smaller subsets
which can be easily managed by the kNN classifier. The kNN
Classifier next classifies the patterns to the final class. The
binary tree classifier uses the following Boolean valued
structural features:

• Number of junctions with the headline
• Presence of sidebar
• Presence of a loop
• Presence of a loop along the headline
The KNN classifier operates on the following structural
features:
• Number of endpoints and their location

• Number of junctions and their location
• Horizontal Projection Count
• Left and Right Projection profiles
• Left and Right Profile depth
• Left and Right Profile Direction Code
• Aspect Ratio
• Distribution of black pixels about the horizontal mid

line
Classifier C2, which is an SVM classifier, uses Gabor filters as
features and the feature vector size is 189.

Classifier C3, is also SVM classifier and it operates on the
following structural and statistical features:
The number in the brackets represents the feature vector size.

• Left, right, top and bottom profile direction codes (12)
• Directional Distance Distribution (144)
• Black to White Transition (100)
• Zoning (49)

8. CLASSIFIER COMBINATION
There have been extensive studies on the combination of results
multiple classifiers. There are two architectural methodologies
for classifier combination. In multi-expert methods, the
classifiers work in parallel. All the classifiers are trained on all
patterns and given a pattern, they all give their decisions and a
separate combiner computes the final decision. Multistage
methods use a serial approach where the next classifier is
trained/consulted only for patterns rejected by the previous
classifiers.
For multi expert systems, voting is the simplest combination
method[13-14]. Voting considers only the best class output by
each classifier and regards the class which appears most often in
the output of the classifiers as output of the combined classifier.
For classifiers with different performances, weighted voting is
more appropriate, which assigns a weight wti to each classifier
Ci and regard the class which has the highest sum of weights of
classifiers outputting this class as the result of the combined
classifier.
We have used a rule based weighted voting classification
scheme, which uses Gurmukhi corpus for decision making. As
shown in Fig. 3, the output of the three classifiers (C1, C2 and
C3) are recognized words w1, w2 and w3 respectively. The
words are then combined to give the final recognized word as
discussed in the following algorithm.
From experiments it was found that the classifier C3 had highest
recognition accuracy followed by C2 and C1 classifiers in that
order. Thus highest priority is given to word w3 followed by w2
and w1. The algorithm makes use of Punjabi word frequency list
generated from a 10 million word Punjabi corpus and a character
bigram list generated from the same corpus. The word frequency
list guides in word selection while the character bigram list is
used to detect illegal character combinations. The algorithm
works as follows:

First we search for the three words in the word frequency list.
If any two words are same and found in the list then they are
retained as final word, else if only one of the word is found or if
more than one word found but they are not same then the words
are selected according the priority assigned to them. It was also
observed that due to thinning and small size of the characters in
upper zone, some of the similar characters in upper zone were
confused by C1 but the same characters are usually recognized
properly by C2 and C3. Thus if for any upper zone character, C2

and C3 agree on same character, then their decision is given
higher weight age as compared to C1.If none of the word is
found in the frequency list, then we generate combinations of
words from the three words and select the word with highest
frequency.
The algorithm is as follow:
Input

1) Recognized words from C1, C2 and C3 classifiers.
(w1, w2 and w3 respectively)

2) Set of Unigrams extracted from a 10 million word
Punjabi corpus. (UG)

3) Set of valid bigram character combinations
Output
 Final recognized word
Algorithm

• if (w1=w2=w3) return w1
• If w1, w2 and w3 ϵ UG then if

 w1 = w2 return w1 (Rule 1.1)
 w1 = w3 return w1 (Rule 1.2)
 w2 = w3 return w2 (Rule 1.3)

• If w3 ϵ UG return w3 (Rule 2)
• If w2 ϵ UG return w2 (Rule 3)
• If w1 ϵ UG then

 Let uw1[], uw2[] and uw3[] be the set of
upper characters in w1, w2 and w3
respectively.

 If (w2 ϵ UG) or (w3 ϵ UG) then
if for any i (uw1[i] <> uw2[i]) and
(uw2[i]==uw3[i]) then uw1[i] = uw2[i]

 return w1 ((Rule 4)
• Else if // when none of w1, w2 or w3 ϵ UG

 w1 = w2 return w1 (Rule 5.1)
 w1 = w3 return w1 (Rule 5.2)
 w2 = w3 return w2 (Rule 5.3)

• Else Create a list of all valid combination of words
formed by taking individual characters from each
word in same zonal position as follow:

 Create a tree with the root node containing empty
string and at each level the children nodes are added
and the words stored in them are formed by
concatenating the word stored in parent node with the
non-unique characters in same corresponding zonal
position in the three words. If any of the new word
formed contains an invalid bigram character, then that
branch is cut off and not further expanded. At the end
the words in the leaf nodes are considered and the
word with highest frequency of occurrence is returned
as final word. (Rule 6)

• In case no valid word found in above step, then count
the invalid bigram character combinations in w1, w2
and w3. Return the one with least count of invalid
combinations. In case of tie, return the word with
higher priority. (Rule 7)

Figure 8. Some sample images

Table 3. Classifier combination output
Image C1 C2 C3 Final Rule
A ਠਹੀ ਰਹੀ ਠਹੀ ਰਹੀ 3

B ਅਜੇਹ ੇ ਅਜੇਤ ੇ ਅਜ਼ੇਹ ੇ ਅਜੇਹ ੇ 4

C ਇਜ ਇਸ ਇਰ ਇਸ 3

D ਬੇਨਤੀ ਬੇਨਤੀ ਥੇਨਤੀ ਬੇਨਤੀ 1.1

E ਦੱਤ ਛੱਡ ਛੱਡ ਛੱਡ 1.3

F ਟਰਚਾਂ ਛਝਭਾਂ ਫਰਜ਼ਾਂ ਫਰਜ਼ਾਂ 2

G ਆਗਰੇ ਆਗਥੇ ਆਗਰੇ ਆਗਰੇ 5.2

H ਿਦੱ◌ਂਦੀ ਿਦ◌ੇਦੀ ਿਟੰਟੀ ਿਦੰਦੀ 6

I ਿਵਅਤਤੀ ਿਵਅਝਤੀ ਿਵਅਕਤੀ ਿਵਅਕਤੀ 2

J ਘਟਾਈ ਘਟਾਟੀ ਘਟਾਟੀ ਘਟਾਈ 4

K ਿਜ◌ਾਆਨ ਿਝ◌ਾਆਨ ਿਗਆਠ ਿਗਆਨ 6

For illustration purpose, we have some sample images taken

from Gurmukhi text. The quality of some of the images is not
good, including some broken and heavy printed images. Table 3,
depicts the words recognized by the three classifiers as well the
final word after combining the classifier results. The rule used
for combination is also displayed in the table. The words found
in the frequency list are italicized. It can be seen in Table 3, that
individually the classifiers are not able to correctly recognize the
images, but on combining the results the final word is correctly
classified. We will like to make special mention of images. First
we consider the word image in Fig 8h. It is recognized by the
three classifiers as, w1= ਿਦੱ◌ਂਦੀ, w2 = ਿਟੰਟੀ and w3 = ਿਦ◌ੇਦੀ. As
none of w1, w2 and w3 ϵ UG and no two words are same, so
we find the combinations of all the valid words that can be
formed from corresponding characters in same zonal positions in
w1, w2 and w3 as shown in Fig. 9. The leaf nodes have four
words and as the word ਿਦੰਦੀ has the highest frequency of
occurrence, so it is finally selected. Similarly, the image in Fig.
8k, is wrongly recognized by the three classifiers. But when the
characters at similar zonal positions are combined from the three
words and the resulting words are checked in the frequency list,
we get the correct final word. In another example of image in
Fig. 8j, we see how simple majority voting fails, while the
lexicon lookup helps in identifying the correct word. The image
is wrongly recognized by classifiers C2 and C3. Even though w2
and w3 are same but since they are not present in the lexicon
and w1 is found in the lexicon, so w1 is selected as final word
according to rule 4.

Figure 9. Combination tree for a sample image

It was found from experiments that the three classifiers, which

operate in parallel, complement each other, very well.
Particularly C1 complements C2 and C3. This is clear from the
complementary table, discussed in next section.
It was observed that classifier C1, which operates on thinned
images and uses structural features, is font and size independent
and works very well for average or good quality text. But its
limitations are: low recognition accuracy for upper zone
characters which are usually small sized and after thinning
resemble each other, and failure to correctly recognize heavy
printed characters, characters with broken loops or extra loops or
badly broken characters. On the other hand the other two
classifiers, which use combination of statistical and structural
features are font dependent but have better recognition accuracy
for upper zone characters, as well as heavy printed and broken
characters. Thus when the results of the recognizers are
combined, in most of the cases the words wrongly recognized by
individual classifiers were finally corrected.

9. EXPERIMENTAL RESULTS
We have tested the system on 31 pages taken from different
sources containing 42650 characters and 10 different font types.
The recognition accuracy of the classifiers is shown in Table 4.
It can be noted that that C3 classifier gives best recognition
accuracy of 96.51%. On combining the outputs of the three
classifiers, the accuracy increased to 98.18%, an increase of
1.67% over the best classifier.

Table 4 : Classifier Recognition Accuracy

Classifier Percentage Recognition Accuracy
C1 94.05
C2 95.61
C3 96.51
Combined 98.18

A graph is also plotted in Fig.10, showing the recognition
accuracy of all the classifiers on the 31 pages. The minimum
recognition accuracy for C1, C2, C3 and combined classifiers is
88.17%, 89.27%, 90.41% and 93.60% respectively, while the
maximum recognition accuracy for C1, C2, C3 and combined
classifiers is 97.88%, 98.79%, 99.31% and 99.84% respectively.
As discussed earlier, the classifier C1 had been used in the
previous version of Gurmukhi OCR[7]. Thus we have a

substantial gain of 4.13% in recognition accuracy over the
present OCR using the combination of classifiers.

 Figure 10. Recognition Accuracy of the Classifiers

We also analysed the combined performance of the classifiers at
word level, since the basic input and output unit used for
classifier combination is the word. Table 5 provides quick
answers to questions such as : If all the three classifiers agree on
the same word, then what is the recognition accuracy or if none
of the classifier agrees on a common word, then what are the
chances of correctly recognizing the word. The first column in
Table displays the common words recognized by the classifiers.
The second , third and fourth columns display the total count,
correct word count and percentage of correctly recognized
words respectively. The last count gives the percentage of
occurrence of the words. Thus from the first row, we conclude
that if all the three words are same, then in 99.57% cases, the
word has been correctly recognized. In 79.74% of cases the
three classifiers give the same output. We can also observe from
the table that in 12.7% of cases classifiers C2 and C3, which
operate on same unthinned image give the same output, though
it is correct in only 72.32% of cases. On the other hand, if
classifier C1 and C2 agree on same word then in 93.92% of
cases the word has been correctly recognized. In only 0.81% of
cases classifiers C1 and C2 give the same output and C3 gives
different output. If all the three classifiers give different outputs
then the chances of correct classification is only 59%.

Table 5 : Similar Word Analysis

Similar
Words

Count Correct Percentage
Recognition
Accuracy

Percentage
Count

w1, w2, w3 8790 8752 99.57 79.64

w1 and w2 89 72 80.89 0.81

w1 and w3 263 247 93.92 2.38

w2 and w3 1402 1014 72.32 12.70

None 493 291 59.02 4.47

Total 11037 10376 94.01 100

Next, we examine just how different the errors of the classifiers
are. For this, we use the complementary error rate.
Complementary rate of classifiers A and B, Comp(A,B),
measures the percentage of time when classifier A is wrong and

classifier B is correct. In Table 6 we show the complementary
rates between the different classifiers. For instance, when the C1
classifier is wrong, the C3 classifier is right 61.63% of the times,
and when the C3 classifier is wrong, the C1 classifier is right
25.9% of the times.

The complementary rates are quite high, which is
encouraging, since this sets the upper bound on how well we can
do in combining the different classifiers. If all classifiers made
the same errors, or if the errors that lower-accuracy classifiers
made were merely a superset of higher accuracy classifier errors,
then combination would be futile.
As already discussed before, classifiers C1 and C2 operate on
different versions of same image, C1 operates on thinned images
while C2 operates on unthinned images. On the other hand, C2
and C3 operate on same images. Thus it is interesting to see that
even though overall C1 has the lowest recognition accuracy still
in 25.9% of cases it correctly classifies the characters wrongly
classified by C3, while C2 even though it has better recognition
accuracy than C1, correctly recognizes 13.32% characters
wrongly classified by C3.

As already discussed above, it was found that classifier C1
performs poorly on upper zone characters. This was borne out in
table 7, where we analysed the performance of the classifiers on
upper zone characters. As can be seen in 79.84% of cases
classifier C3 correctly classified upper zone characters when C1
was wrong and only in 12.25% of cases C1 correctly classified
the wrongly classified upper zone characters by C3. For middle
and lower zone characters, C3 rightly classifies 51.14% of
characters wrongly classified by C1, while C1 correctly
classifies 34.11% of characters wrongly classified by C3.

Table 6: Complementary Table for all characters

Comp (Ci, Cj) C1 C2 C3

C1 0 54.17 61.63
C2 33.43 0 34.26
C3 25.9 13.32 0

Table 7: Complementary Table for upper zone characters

Comp (Ci, Cj) C1 C2 C3

C1 0 70.94 79.84
C2 19.25 0 32.76
C3 12.25 18.93 0

Table 8: Complementary Table for middle and lower zone
characters

Comp (Ci, Cj) C1 C2 C3

C1 0 44.63 51.14
C2 41.51 0 11.45
C3 34.11 34.78 0

For illustration purpose, we have a sample image in Fig. 11. The
recognition results of the different recognizers are shown in Fig
12. Characters in red represent wrongly recognized characters.

Figure11. A Sample Image

a) Output from Classifier C1 (Recognition accuracy 95.29%)

b) Output from classifier C2 (Recognition accuracy 94.47%)

c) Output for Classifier 3 (Recognition accuracy 97.13%)

d) Output after combining results of all the recognizers
(Recognition accuracy 99.59%)
Figure 12. Recognized text of sample image of Figure 11.

10. ACKNOWLEDGEMENT
This research work is sponsored by Ministry of Communications
and Information Technology under the project : Development of
Robust Document Analysis and Recognition System for Printed
Indian Scripts.

11. REFERENCES
[1] Brill Eric and Jun Wu : Classifier Combination for

Improved Lexical Disambiguation, Proceedings of the 17th
international conference on Computational linguistics,
vol.1, pp. 191-195. Montreal, Quebec, Canada (1998).

[2] Roli Fabio, Giacinto Giorgio, Vernazza Gianni : Methods
for Designing Multiple Classifier Systems, Proceedings of
the Second International Workshop on Multiple Classifier
Systems, pp. 78 – 87. Springer-Verlag London, UK
(2001).

[3] Ludmila IK., : A Theoretical Study on Six Classifier Fusion
Strategies, IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 24, No. 2, pp. 281--286, (2002.).

[4] Kittler J., Hatef M., Duin RPW, Matas J. : On Combining
Classifiers, IEEE Trans. On Pat. Analysis and Machine
Intel., vol. 20, No.3, pp. 226—239 (1998).

[5] Prevost L., Michel-Sendis C., Moises A., Oudot L.,
Milgram M : Combining model-based and discriminative
classifiers: application to handwritten character recognition,
ICDAR’03 (2003).

[6] Ke Chen1, Lanwang, Huisheng Chi : Methods of
Combining Multiple Classifiers with Different Features and
their Applications to Text-Independent Speaker
Identification: International Journal of Pattern Recognition
and Artificial Intelligence, Vol. 11, No. 3, pp. 417-445
(1997).

[7] Lehal G. S., Singh Chandan, : A Complete Machine
Printed Gurmukhi OCR System, Vivek, pp. 10--17, Vol.
16, No. 3. (2006).

[8] Benedicte Allier, Nadia Bali, Hubert Emptoz : Automatic
accurate broken character restoration for patrimonial
documents. IJDAR 8(4), pp 246--261 (2006)

[9] Billawala, N., Hart, P.E., Pearis, M. : Image continuation.
In : Proceedings of the International Conference on
Document Analysis and Recognition, pp. 53-57, Tsukuba,
Japan (1993)

[10] Shi, Z., Govindaraju, V. : Character image enhancement by
selective region-growing. Pattern Recognit. Lett. (17), pp.
523--527 (1996)

[11] Yu. D., Yan, H.: Reconstruction of broken handwritten
digits based on structural morphological features. Pattern
Recognit. (34), pp. 235--254 (2001).

[12] Whichello, A., Yan, H. : Linking broken character borders
with variable sized masks to improve recognition. Pattern
Recognition 29(8), pp. 1429--1435(1996)

[13] Bhattacharya U., Chaudhuri B. B. : A Majority Voting

Scheme for Multi resolution Recognition of Hand printed
Numerals, ICDAR’03, pp. 16--20, 3-6 (2003).

[14] Lam L., Suen, C. Y., : Application of Majority Voting to
Pattern Recognition : An Analysis of its Behaviour and
Performance, IEEE Trans. on System Man and Cyebrn-
Part A : Systems and Humans, vol. 27, pp. 553 – 568
(1997).

http://portal.acm.org/author_page.cfm?id=81100440109&coll=GUIDE&dl=GUIDE&trk=0&CFID=33770500&CFTOKEN=11690623
http://portal.acm.org/author_page.cfm?id=81100207534&coll=GUIDE&dl=GUIDE&trk=0&CFID=33770500&CFTOKEN=11690623

	Figure 1. Gurmukhi Character Set
	Figure 2. Three zones of a word in Gurmukhi script

