
Optical Character Recognition of Gurmukhi Script using 
Multiple Classifiers 

Gurpreet Singh lehal 
Punjabi University, Patiala 

India. 
+91-98154-73767 
gslehal@gmail.com 

 
 
ABSTRACT 
In this paper, we present a robust and font independent 
Gurmukhi OCR system, which performs reasonably well on old 
documents as well. The OCR is based on four classifiers 
operating in serial and parallel mode. For combining the results 
of the classifiers operating in parallel mode, a corpus based 
weighted voting method is used. Combining multiple classifiers 
in such a way, that their individual weaknesses are compensated 
while their individual strengths are preserved, results in 
significantly better performance than what can be achieved with 
a single classifier. The problem of broken characters, which 
frequently appear in old documents, has also been tackled using 
a structural feature based algorithm. 
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1. INTRODUCTION 
The idea of combining classifiers for increasing the recognition 
accuracy has been widely used in recent pattern recognition 
applications[1-5]. It has been experimentally shown that 
combination of several complementary classifiers leads to 
classifiers with improved performance. There are a number of 
classification algorithms available developed from different 
theories and methodologies. Usually, for a specific application 
problem, each of these classifiers could reach a certain degree of 
success, but generally none of them is totally perfect for 
practical applications. Similarly, for a specific recognition 
problem, there are often numerous types of features which could 
be used to represent and recognize patterns. These features are 
also represented in very diversified forms and it is rather hard to 
lump them together for one single classifier to make a decision. 
As a result, multiple classifiers are needed to deal with the 
different features [6]. It also results in a general problem how to 
combine those classifiers with different features to yield the 
improved performance.   

In this paper, we present a multiple classifier based Gurmukhi 
OCR based on four classifiers operating in serial and parallel 
mode.  For combining the results of the classifiers operating in 
parallel mode, a corpus based weighted voting method is used. 
We had earlier developed a Gurmukhi OCR, with recognition 
accuracy of around 97%, which used two classifiers in serial 
mode [7]. Though the OCR performed very well on good quality 
text, its accuracy went down for bad quality text images. To 
increase the accuracy of the OCR, particularly for poor quality 
documents, we added two more classifiers in parallel to the 
existing one. The experiments, which are discussed in following 
sections, have given very encouraging results. Another problem, 
we faced for recognition of old documents was the presence of 

broken characters. Many papers have appeared in literature for 
handling this problem[8-12]. Most of the techniques suggested 
in literature use character image restoration techniques 
simultaneously with the recognition modules. In this paper we 
present a structural feature based algorithm to detect and join 
broken word and character components in Gurmukhi text, which 
works independently of recognition module. 

 
 
 
2. CHARACTERISTICS OF GURMUKHI 

SCRIPT 
Gurmukhi script is used primarily for the Punjabi language, 
which is the world’s 12th most widely spoken language. The 
structural properties of the Gurmukhi script, from OCR point of 
view are: 
• Gurmukhi script is syllabic in nature. Gurmukhi script 

consists of 41 consonants called vianjans, 9 vowel symbols 
called laga or matras, 2 symbols for nasal sounds (  ◌ਂ , ◌ੰ  ), 
one symbol for reduplication of sound of any consonant (  
◌ੱ )  and three half characters (  ◌੍ਹ  ◌੍ਵ  ◌੍ਰ ), which lie at 
the feet of consonants. The complete Gurmukhi character 
set is shown in Fig 1. 

 

Figure 1. Gurmukhi Character Set 



• A majority of the characters have a horizontal line at the 
upper part. The characters of words are connected mostly 
by this line called head line and usually there is no vertical 
inter-character gap in the letters of a word. The words are, 
however,  separated with blank spaces. 

• A word in Gurmukhi script can be partitioned into three 
horizontal zones (Fig 1). The upper zone denotes the 
region above the head line, where vowels reside, while the 
middle zone represents the area below the head line where 
the consonants and some sub-parts of vowels  are present. 
The lower zone represents the area below middle zone 
where some vowels and certain half characters lie in the 
feet of consonants.   

• All the characters in the middle zone, touch the headline at 
least once.  

• The vertical line if present in a character, is mostly present 
on the right most end of the character. 

• The consonant height is usually greater than its width. The 
exceptions are ਅ and ਘ 

  

Figure 2. Three zones of a word in Gurmukhi script 

 
3. SYSTEM ARCHITECTURE 
In our present work, we have used four classifiers for 
recognition of the Gurmukhi text image. The first two classifiers 
operate in serial mode. The result of these classifiers is next 
combined in parallel mode with the other two classifiers using a 
rule based voting method. The system architecture is shown in 
Fig. 3.  
 

 
 
 Figure3. Multi Classifier Gurmukhi OCR System 
Architecture   

The word images are extracted from the text image and after 
skew correction and cleaning are sent to the recognizers for 
character segmentation, feature extraction and classification. It 

was found that frequently in old documents, the word images 
had broken headlines and characters, which resulted in low 
recognition accuracy. To increase the recognition accuracy it 
became necessary to repair these broken headlines and 
characters.   

In our present work, we have developed a structural feature 
based algorithm to detect and join broken word and character 
components in Gurmukhi text. We tackle the breakage in words 
at two levels: breakage in headline and breakage in characters. 

            
  
 
 
 
 
 
 
 

Figure 4. Sample word images with broken headlines  
 
4. HANDLING BROKEN HEADLINES IN 

GURMUKHI WORD IMAGES 
As discussed above, in a Gurmukhi word the middle zone 
characters are glued along the headline. The character segmentor 
expects the middle zone characters to be touching the headline, 
with no vertical inter-character gap. But in type written and old 
text, as well as locally skewed word images, the headline is 
frequently broken and the characters are not aligned along the y-
axis as a result the word image is split into a group of single or 
multiple characters (Fig. 4). This creates problem for the 
character segmentor as it becomes difficult to identify the 
position of the headline and the components lying above and 
below it. Thus it becomes necessary to join the broken headlines 
and align the headline of the characters of the word by 
displacing the character images along the y-axis. To solve the 
problem, first the horizontal row in the word image 
corresponding to the word  headline (WHL) in the upper half of 
the word image is determined, based on the following four 
factors: 
4.1 Position of the headline in the sentence. This is determined 

as the horizontal row in the sentence image with having 
maximum number of black pixels. 

4.2 Position of the headline in the previous two words. It may 
happen that there is some local skew in the word images 
due to warping or tilt at end of the sentences, as a result the 
word headline may not be aligned with the sentence 
headline. 

4.3 Row with maximum horizontal span of black pixels in the 
word image. 

4.4 Row having maximum number of black pixel count in the 
word image. 

Once WHL is determined, the word image is decomposed into  
connected components (CCs) separated by vertical white space. 
Each of these CC could represent a group of one or more 
characters.  
For each of the Component, determine the row corresponding to 
the position of component headline (CHL) satisfying one or both 
of the following criteria in the following order: 

• Row with maximum horizontal span of black pixels. 
• Row having maximum number of black pixel count. 



• Row should be at most d pixels apart from WHL 
where d = 0.2*height of CC 

Let delta = WHL – CHL 
Move all the pixels of CC by delta pixels along y axis. 
Lastly, join all the CCs by drawing a horizontal line between the 
CCs along WHL. 
Fig. 5 displays some of the sample word images with broken 
headlines, which were joined back by applying the above 
algorithm.  

 
Figure 5. Some sample reconstructed broken word headlines  

  
5. BROKEN CHARACTERS IN 

GURMUKHI 
For the first two classifiers, which operate in serial mode, the 
image is thinned (reduced to single pixel width) before being 
sent for recognition. These classifiers use structural features and 
are thus highly sensitive to cuts and joints. Thus it was necessary 
to repair the broken characters in such skeletonized images. An 
in-depth analysis was made of the common broken characters in 
Gurmukhi. For this purpose about 2500 words containing 
broken characters scanned from old books were collected. The 
broken characters can be broadly categorized as: 

• Characters broken from the headline 
• Characters split vertically into  non-overlapping 

bounding boxes 
• Characters split horizontally into non-overlapping 

bounding boxes 
• Character split into two or more parts with 

overlapping bounding boxes.  
It is to be noted that we ignore the headline, while looking for 
overlapping regions. 
 
Table 1.  Categories of broken characters in Gurmukhi 

Cat. Image 
1  

2  

3  
 
 

4  
 
 

As already discussed above, a Gurmukhi word can be 
partitioned into three zones. We found that the majority of 
broken character segments are present in the middle zone. It is 
also to be noted that there are six multiple component characters 
in the middle zone and care has to be taken that we do not join 
those components. Also many times, the characters in the lower 
zone are very closely placed near the middle zone characters and 
they should not treated as broken components of middle zone 
characters and joined with them. The broken components have 
to be joined with the appropriate components to form the 
character. Decision also has to be taken which connected 
component pairs have to be joined and which were to be 
ignored. All this calls for a detailed study of the structure of 
Gurmukhi characters and words, while designing the algorithm. 

First the position of the headline in the word image is noted 
and the headline is then rubbed off.  The word image is then 
decomposed into connected components (CCs) and the relevant 
information about the CCs is extracted and stored. The closely 
lying CCs are determined. It is observed that in many cases, 
genuinely separated CCs, are lying very close to each other and 
care has to be taken that they are not joined. We have 
categorized such closely lying CCs, which should not be joined 
in Table 2. 

Table 2.  Closely lying Gurmukhi Connected Components to 
be ignored for joining 

Category CC Images with headlines 
removed 

1. CCs of middle zone 
characters containing dot 
like symbol at feet of 
characters called nukta 

 

2. Closely lying CCs of the 
characters in  middle and 
lower zone 

 

3. Vertically closely lying or 
overlapping CCs  

 

4. CCs which are vertically 
very close and one of the CC 
is a vertical line 

 

 
For the joinable pairs, their joining points are found.  These 
joining points could be, depending on the overlapping category, 
endpoints, bend points, joints or boundary points in the CC.  
We define the endpoint, joint, bend point and boundary point as 
follows: 
• End Point   
A black pixel not lying on the y-axis corresponding to the 
headline and with only one black pixel in its 3 x 3 
neighbourhood. 
• Joint  
A black pixel  not lying on the y-axis corresponding to the 
headline and having three or more black pixels in its 3 x 3 
neighbourhood. 
• Bend Point 
A white pixel where two or more lines meet at 90 or 45 degrees. 
• Boundary Point  
 A black pixel lying on one of the boundary of the CC.  

These points are extracted from the CCs and the point pairs, 
where the first point is from one CC and second point from the 
other CC, lying within the threshold value are collected.  If no 
such pair is found then the CCs are not joined. The decision to 



join the CCs is kept pending, till all the CC pairs have been 
processed. If any of the joining points have some common 
points, then only the nearest pair is retained. The points are then 
joined by drawing lines between them. If there remain some 
CCs, which are not touching the headline, we use the structural 
property of Gurmukhi script that all the characters in the middle 
zone touch the headline at least once and increase the threshold 
value to test if they can be joined with any other CC or headline. 
The complete algorithm is described in the next section. 
 
6. Algorithm for Repairing Skeletonized 

Gurmukhi Characters 
The algorithm to repair the skeletonized Gurmukhi characters is 
as follows: 

1. Skeletonize the word image. 
2. Determine the position of the headline in the word 

image and rub off the headline.  
3. Decompose the word image into connected 

components. Create the list, CList, of all the connected 
components (CCs) which lie horizontally below the 
position of headline in the middle zone. For each of 
the CC, store the information about the global position 
of its bounding box, number and position of end 
points, joints, bend points and boundary points in the 
CC and other such relevant information. 

4. Sort the CCs along the x-axis. Find the heights of the 
CCs touching the headline. Set threshold = (height of 
the tallest CC) / 4.  

5. Find all pair of CCs, whose bounding boxes are at 
most threshold distance apart.  Set their overlap type 
as  
• 0 if  the bounding boxes  overlap horizontally and 

vertically 
• 1 if  the bounding boxes  share some common 

points along x-axis, but not along y-axis. 
• 2 if  the bounding boxes  share some common 

points along y-axis, but not along x-axis. 
• 3 if  the bounding boxes do not share any 

common points in x or y axis. 
6. If for any pair of CCs, CC1 and CC2,  if CC1 lies in 

the lower quarter of the word image along y-axis, 
check that: 
• The minimum value of bounding box of CC1 

along y-axis should not be greater than the 
median height of the CCs touching the headline. 

• The area of CC1 should be at least 2*threshold  
pixels. 

• If the overlap type is 0, then CC1 should not lie 
in the middle or left of CC2.  

7. If any of the above condition is false, remove the 
connected component pair from the list. This is to 
avoid joining the nukta signs and the characters lying 
in lower zone with the middle zone characters 
(Category 1 and 2 of Table2).  

8. If overlap type is 0, set thresh = 1.25*threshold.  
9. Let S1 = Set of all endpoints, bend points and joints in 

CC1.  
10. Let S2 = Set of all endpoints, bend points and joints in 

CC2.  

11. Find C= Set of all pairs of points from S1 and S2 
which lie within thresh distance.  

12. If for any pair, their bounding boxes overlap, retain 
the smaller distance pair and delete the other pair to 
avoid creation of cycles. 

13. If overlap type is 1 or 3, set thresh = threshold. 
Assume CC1 is nearer to headline.  

14. Let S1 = Set of all endpoints, bendpoints, joints and 
boundary points lying along the lower horizontal 
boundary of the bounding box of CC1.  

15. Let S2 = Set of all endpoints, bend points, joints and 
boundary points lying along the upper horizontal 
boundary of the bounding box of CC2.  

16. Find C= Set of all pairs of points from S1 and S2 
which lie within thresh distance. 

17. If overlap type is 2, set thresh = threshold. Assume 
CC1 occurs before CC2 in the sorting order along x-
axis. If CC1 is a vertical line or the width to height 
ratio of the bounding box formed by joining CC1 and 
CC2 is greater than 1.25 then ignore this pair for 
merging. This is to take care that the closely lying 
characters are not merged together (Category 3 and 4 
Table2).   

18. Let S1 = Set of all endpoints, bendpoints, joints and 
boundary points lying along the right vertical 
boundary of the bounding box.  

19. Let S2 = Set of all endpoints, bend points and joints 
and boundary points lying along the left vertical 
boundary of the bounding box of CC2.  

20. If CC2 is a vertical line then exclude the joints and 
boundary points from S1. This is to avoid joining CCs 
similar to first and third pairs of CCs of category 4 in 
Table 2, as their nearest joining points lying within the 
threshold are on boundary or on joints. 

21. Find C= Set of all pairs of points from S1 and S2 
which lie within thresh. If both the points in a pair are 
boundary points, remove that pair.  

22. Examine all the candidate pairs in set C. If any pair 
has a common co-ordinate point, retain the one having 
smaller distance. 

23. At the end join all the candidate pairs in set C by 
drawing a straight line between them. Update CList, 
the list of Connected Components, by replacing the 
CCs which have been joined with the new merged CC.  

24. Let SList be the sublist of CList containing  connected 
components not touching the headline. If SList is not 
empty, then add the skeletonized image of headline to 
CList.  

25. If SList empty then Stop, else 
26. Set thresh = 1.5 * threshold. Repeat the steps 5 to 11 

and then stop. Instead of taking both pairs of CCs 
from Clist, one element is from CList and second from 
SList. This is to ensure the Gurmukhi Script property 
that all the characters in the middle zone, touch the 
headline at least once. So if we find a CC not touching 
the headline, then it is a candidate for joining with 
either the headline or some other CC which is 
touching the headline. 

The algorithm was tested on a set of 2500 words containing 
broken characters and in 82.3% of cases, the broken components 
were correctly joined together to form a recognizable unit, while 
in 4.9% of cases, the components were wrongly joined and in 



12.8% of cases the broken components were not joined with any 
other component. Some sample images are shown in Fig. 6. The 
first image in each row is the thinned binary image of the word. 
The second image is the image obtained after joining the broken 
components and smoothening the headline.   

 
Figure 6.  Sample broken character images repaired  
 
7.  CLASSIFIERS USED IN GURMUKHI 

OCR 
As already mentioned, we have used four classifiers in our 

Gurmukhi OCR system. For the first two classifiers, which 
operate in serial mode, the image is skeletonized before being 
sent for recognition. As an example, we have in Fig. 7(a), a 
word image for recognition.  The image after skew correction 
and headline repair is sent to the C2 and C3 classifiers is in Fig. 
7 (b), while the same image after skeletonization and headline 
smoothening (Fig 7c) is sent  is to C1 classifier. The classifier 
C1 is a combination of two classifiers (Binary Tree Classifier 
and KNN Classifiers) , which operate in serial mode.  The 
details are available in [7]. 

      
Figure7. 
a) Original Image    b) Repaired Image      c) Thinned Image 
 

The binary tree classifier, operates on middle zone 
characters and its purpose is to classify the patterns into classes 
of similar looking characters. The purpose is to precisely divide 
the set of characters lying in middle zone into smaller subsets 
which can be easily managed by the kNN classifier. The kNN 
Classifier next classifies the patterns to the final class. The 
binary tree classifier uses the following Boolean valued 
structural features: 

• Number of junctions with the headline 
• Presence of sidebar 
• Presence of a loop 
• Presence of a loop along the headline 
The KNN classifier operates on the following structural 
features: 
• Number of endpoints and their location  

• Number of junctions and their location 
• Horizontal Projection Count 
• Left and Right Projection profiles 
• Left and Right Profile depth 
• Left and Right Profile Direction Code 
• Aspect Ratio 
• Distribution of black pixels about the horizontal mid 

line 
Classifier C2, which is an SVM classifier, uses Gabor filters as 
features and the feature vector size is 189.  

Classifier C3, is also SVM classifier and it operates on the 
following structural and statistical features: 
The number in the brackets represents the feature vector size. 

• Left, right, top and bottom profile direction codes (12) 
• Directional Distance Distribution  (144) 
• Black to White Transition (100) 
• Zoning (49) 
 

8. CLASSIFIER COMBINATION 
There have been extensive studies on the combination of results 
multiple classifiers. There are two architectural methodologies 
for classifier combination. In multi-expert methods, the 
classifiers work in parallel. All the classifiers are trained on all 
patterns and given a pattern, they all give their decisions and a 
separate combiner computes the final decision. Multistage 
methods use a serial approach where the next classifier is 
trained/consulted only for patterns rejected by the previous 
classifiers.  
For multi expert systems, voting is the simplest combination 
method[13-14]. Voting considers only the best class output by 
each classifier and regards the class which appears most often in 
the output of the classifiers as output of the combined classifier. 
For classifiers with different performances, weighted voting is 
more appropriate, which assigns a weight wti to each classifier 
Ci and regard the class which has the highest sum of weights of 
classifiers outputting this class as the result of the combined 
classifier. 
We have used a rule based weighted voting classification 
scheme, which uses Gurmukhi corpus for decision making. As 
shown in Fig. 3, the output of the three classifiers (C1, C2 and 
C3) are recognized words w1, w2 and w3 respectively. The 
words are then combined to give the final recognized word as 
discussed in the following algorithm.  
From experiments it was found that the classifier C3 had highest 
recognition accuracy followed by C2 and C1 classifiers in that 
order. Thus highest priority is given to word w3 followed by w2 
and w1. The algorithm makes use of Punjabi word frequency list 
generated from a 10 million word Punjabi corpus and a character 
bigram list generated from the same corpus. The word frequency 
list guides in word selection while the character bigram list is 
used to detect illegal character combinations. The algorithm 
works as follows: 

First we search for the three words in the word frequency list. 
If any two words are same and found in the list then they are 
retained as final word, else if only one of the word is found or if 
more than one word found but they are not same then the words 
are selected according the priority assigned to them. It was also 
observed that due to thinning and small size of the characters in 
upper zone, some of the similar characters in upper zone were 
confused  by C1 but the same characters are usually recognized 
properly by C2 and C3. Thus if for any upper zone character, C2 



and C3 agree on same character, then their decision is given 
higher weight age as compared to C1.If none of the word is 
found in the frequency list, then we generate combinations of 
words from the three words and select the word with highest 
frequency.  
The algorithm is as follow: 
Input 

1) Recognized words from C1, C2 and C3 classifiers. 
(w1, w2 and w3 respectively) 

2) Set of Unigrams extracted from a 10 million word 
Punjabi corpus. (UG) 

3) Set of valid bigram character combinations 
Output 
     Final recognized word 
Algorithm 

• if (w1=w2=w3) return w1 
• If w1, w2 and w3 ϵ UG then if  

 w1 = w2 return w1 (Rule 1.1) 
 w1 = w3 return w1 (Rule 1.2) 
 w2 = w3 return w2 (Rule 1.3) 

• If w3 ϵ UG return w3 (Rule 2 )  
• If w2 ϵ UG return w2  (Rule 3 ) 
• If w1 ϵ UG then 

 Let uw1[], uw2[] and uw3[] be the set of 
upper characters in w1, w2 and w3 
respectively. 

 If (w2 ϵ UG ) or ( w3 ϵ UG) then  
if for any i (uw1[i] <> uw2[i]) and 
(uw2[i]==uw3[i]) then uw1[i] = uw2[i]  

 return w1 ((Rule 4 ) 
• Else if  // when none of w1, w2 or w3 ϵ UG 

 w1 = w2 return w1 (Rule 5.1) 
 w1 = w3 return w1  (Rule 5.2) 
 w2 = w3 return w2  (Rule 5.3) 

• Else Create a list of all valid combination of words 
formed by taking individual characters from each 
word in same zonal position as follow: 

 Create a tree with the root node containing empty 
string and at each level the children nodes are added 
and the words stored in them are formed by 
concatenating the word stored in parent node with the 
non-unique characters in same corresponding zonal 
position in the three words. If any of the new word 
formed contains an invalid bigram character, then that 
branch is cut off and not further expanded. At the end 
the words in the leaf nodes are considered and the 
word with highest frequency of occurrence is returned 
as final word.  (Rule 6) 

• In case no valid word found in above step, then count 
the invalid bigram character combinations in w1, w2 
and w3. Return the one with least count of invalid 
combinations. In case of tie, return the word with 
higher priority. (Rule 7) 

 
 
Figure 8. Some sample images 

Table 3. Classifier combination output  
Image C1 C2 C3 Final Rule 
A ਠਹੀ ਰਹੀ ਠਹੀ ਰਹੀ 3 

B ਅਜੇਹ ੇ ਅਜੇਤ ੇ ਅਜ਼ੇਹ ੇ ਅਜੇਹ ੇ 4 

C ਇਜ ਇਸ ਇਰ ਇਸ 3 

D ਬੇਨਤੀ ਬੇਨਤੀ ਥੇਨਤੀ ਬੇਨਤੀ 1.1 

E ਦੱਤ ਛੱਡ ਛੱਡ ਛੱਡ 1.3 

F ਟਰਚਾਂ ਛਝਭਾਂ ਫਰਜ਼ਾਂ ਫਰਜ਼ਾਂ 2 

G ਆਗਰੇ ਆਗਥੇ ਆਗਰੇ ਆਗਰੇ 5.2 

H ਿਦੱ◌ਂਦੀ ਿਦ◌ੇਦੀ ਿਟੰਟੀ ਿਦੰਦੀ 6 

I ਿਵਅਤਤੀ ਿਵਅਝਤੀ ਿਵਅਕਤੀ ਿਵਅਕਤੀ 2 

J ਘਟਾਈ ਘਟਾਟੀ ਘਟਾਟੀ ਘਟਾਈ 4 

K ਿਜ◌ਾਆਨ ਿਝ◌ਾਆਨ ਿਗਆਠ ਿਗਆਨ 6 

 
For illustration purpose, we have some sample images taken 

from Gurmukhi text. The quality of some of the images is not 
good, including some broken and heavy printed images. Table 3, 
depicts the words recognized by the three classifiers as well the 
final word after combining the classifier results. The rule used 
for combination is also displayed in the table. The words found 
in the frequency list are italicized. It can be seen in Table 3, that 
individually the classifiers are not able to correctly recognize the 
images, but on combining the results the final word is correctly 
classified. We will like to make special mention of images. First 
we consider the word image in Fig 8h. It is recognized by the 
three classifiers as, w1= ਿਦੱ◌ਂਦੀ, w2 = ਿਟੰਟੀ and w3 = ਿਦ◌ੇਦੀ.  As 
none of w1, w2  and w3 ϵ UG and no two words are same, so 
we find the combinations of all the valid words that can be 
formed from corresponding characters in same zonal positions in 
w1, w2 and w3 as shown in Fig. 9. The leaf nodes have four 
words and as the word ਿਦੰਦੀ has the highest frequency of 
occurrence, so it is finally selected.   Similarly, the image in Fig. 
8k, is wrongly recognized by the three classifiers. But when the 
characters at similar zonal positions are combined from the three 
words and the resulting words are  checked in the frequency list, 
we  get the correct final word. In another example of image in 
Fig. 8j, we see how simple majority voting fails, while the 
lexicon lookup helps in identifying the correct word.  The image 
is wrongly recognized by classifiers C2 and C3. Even though w2 
and w3 are same but since they are not present in the lexicon 
and w1 is found in the lexicon, so w1 is selected as final word 
according to rule 4.  
 



 
Figure 9. Combination tree for a sample image 

 
It was found from experiments that the three classifiers, which 

operate in parallel, complement each other, very well. 
Particularly C1 complements C2 and C3. This is clear from the 
complementary table, discussed in next section. 
It was observed that classifier C1, which operates on thinned 
images and uses structural features, is font and size independent 
and works very well for average or good quality text. But its 
limitations are: low recognition accuracy for upper zone 
characters which are usually small sized and after thinning 
resemble each other, and failure to correctly recognize heavy 
printed characters, characters with broken loops or extra loops or 
badly broken characters. On the other hand the other two 
classifiers, which use combination of statistical and structural 
features are font dependent but have better recognition accuracy 
for upper zone characters, as well as heavy printed and broken 
characters. Thus when the results of the recognizers are 
combined, in most of the cases the words wrongly recognized by 
individual classifiers were finally corrected.  
 
9. EXPERIMENTAL RESULTS 
We have tested the system on 31 pages taken from different 
sources containing 42650 characters and 10 different font types. 
The recognition accuracy of the classifiers is shown in Table 4. 
It can be noted that that C3 classifier gives best recognition 
accuracy of 96.51%. On combining the outputs of the three 
classifiers, the accuracy increased to 98.18%, an increase of 
1.67% over the best classifier. 
  
Table 4 : Classifier Recognition Accuracy 

Classifier Percentage Recognition Accuracy 
C1 94.05  
C2 95.61  
C3 96.51  
Combined 98.18 

A graph is also plotted in Fig.10, showing the recognition 
accuracy of all the classifiers on the 31 pages. The minimum 
recognition accuracy for C1, C2, C3 and combined classifiers is 
88.17%, 89.27%, 90.41% and 93.60% respectively, while the 
maximum recognition accuracy for C1, C2, C3 and combined 
classifiers is 97.88%, 98.79%, 99.31% and 99.84% respectively. 
As discussed earlier, the classifier C1 had been used in the 
previous version of Gurmukhi OCR[7]. Thus we have a 

substantial gain of 4.13% in recognition accuracy over the 
present OCR using the combination of classifiers. 
 

 Figure 10. Recognition Accuracy of the Classifiers 
 
We also analysed the combined performance of the classifiers at 
word level, since the basic input and output unit used for 
classifier combination is the word. Table 5 provides quick 
answers to questions such as : If all the three classifiers agree on 
the same word, then what is the recognition accuracy or if none 
of the classifier agrees on a common word, then what are the 
chances of correctly recognizing the word.  The first column in 
Table displays the common words recognized by the classifiers. 
The second , third and fourth columns display the total count, 
correct word count and percentage of correctly recognized 
words respectively. The last count gives the percentage of 
occurrence of the words.   Thus from the first row, we  conclude 
that if all the three words are same, then in 99.57% cases, the 
word has been correctly recognized. In 79.74% of cases the 
three classifiers give the same output. We can also observe from 
the table that in 12.7% of cases classifiers C2 and C3, which 
operate on same unthinned image give the same output, though 
it is correct in only 72.32% of cases. On the other hand, if 
classifier C1 and C2 agree on same word then in 93.92% of 
cases the word has been correctly recognized. In only 0.81% of 
cases classifiers C1 and C2 give the same output and C3 gives 
different output. If all the three classifiers give different outputs 
then the chances of correct classification is only 59%. 
 
Table 5 : Similar Word Analysis 

Similar 
Words 

Count Correct Percentage 
Recognition 
Accuracy 

Percentage 
Count 

w1, w2, w3 8790 8752 99.57 79.64 

w1 and w2 89 72 80.89 0.81 

w1 and w3 263 247 93.92 2.38 

w2 and w3 1402 1014 72.32 12.70 

None 493 291 59.02 4.47 

Total 11037 10376 94.01 100 

Next, we examine just how different the errors of the classifiers 
are. For this, we use the complementary error rate. 
Complementary rate of classifiers A and B, Comp(A,B),  
measures the percentage of time when classifier A is wrong and 



classifier B is correct. In Table 6 we show the complementary 
rates between the different classifiers. For instance, when the C1 
classifier is wrong, the C3 classifier is right 61.63% of the times, 
and when the C3 classifier is wrong, the C1 classifier is right 
25.9% of the times. 

The complementary rates are quite high, which is 
encouraging, since this sets the upper bound on how well we can 
do in combining the different classifiers. If all classifiers made 
the same errors, or if the errors that lower-accuracy classifiers 
made were merely a superset of higher accuracy classifier errors, 
then  combination would be futile. 
As already discussed before, classifiers C1 and C2 operate on 
different versions of same image, C1 operates on thinned images 
while C2 operates on unthinned images. On the other hand, C2 
and C3 operate on same images. Thus it is interesting to see that 
even though overall C1 has the lowest recognition accuracy still 
in 25.9% of cases it correctly classifies the characters wrongly 
classified by C3, while C2 even though it has better recognition 
accuracy than C1, correctly recognizes 13.32% characters 
wrongly classified by C3.   

As already discussed above, it was found that classifier C1 
performs poorly on upper zone characters. This was borne out in 
table 7, where we analysed the performance of the classifiers on 
upper zone characters. As can be seen in 79.84% of cases 
classifier C3 correctly classified upper zone characters when C1 
was wrong and only in 12.25% of cases C1 correctly classified 
the wrongly classified upper zone characters by C3. For middle 
and lower zone characters, C3 rightly classifies 51.14% of 
characters wrongly classified by C1, while C1 correctly 
classifies 34.11% of characters wrongly classified by C3. 

 
Table 6: Complementary Table for all characters 

Comp (Ci, Cj) C1 C2 C3 
 

C1 0 54.17 61.63 
C2 33.43 0 34.26 
C3 25.9 13.32 0 

 
Table 7: Complementary Table for upper zone characters 

Comp (Ci, Cj) C1 C2 C3 
 

C1 0 70.94 79.84 
C2 19.25 0 32.76 
C3 12.25 18.93 0 

 
Table 8: Complementary Table for middle and lower zone 
characters 

Comp (Ci, Cj) C1 C2 C3 
 

C1 0 44.63 51.14 
C2 41.51 0 11.45 
C3 34.11 34.78 0 

 
For illustration purpose, we have a sample image in Fig. 11. The 
recognition results of the different recognizers are shown in Fig 
12. Characters in red represent wrongly recognized characters.  

 
Figure11. A Sample Image 
 
 

 
a) Output from Classifier C1 (Recognition accuracy 95.29%) 
 
 

 
b) Output from classifier C2 (Recognition accuracy 94.47%) 
 
 

 
c) Output for Classifier 3 (Recognition accuracy 97.13%) 
 
 
 
 



 
d) Output after combining results of all the recognizers 
(Recognition accuracy 99.59%) 
Figure 12. Recognized text of sample image of Figure 11. 
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